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Coding in advance of the Feb 12, 2018 class

For next time, I would like you to write codes to compute the chi squared, and the

Poisson log likelihood, for one-dimensional data.

To do this, suppose that we have n data bins, the ith of which has di observed data

counts, and that in a particular model we would expect mi counts in bin i. Then we compute

χ2 using

χ2 =
n∑

i=1

(mi − di)2

di
. (1)

This formula assumes that the statistics are Gaussian, and that the standard deviation is√
di. Note that Pearson’s chi squared (which is what is often meant by “chi squared”)

actually assumes that the standard deviation is
√
mi, but in astronomical applications it

is common (but not correct!) to associate uncertainties with the data as we do above. So

that’s what we’ll calculate.

The Poisson likelihood (not yet the log likelihood) is given by

L =
n∏

i=1

mdi
i

di!
e−mi . (2)

As we’ll learn when we discuss Bayesian statistics, unlike χ2, the value L has no independent

meaning; it is the ratio of L for one parameter combination to that of another that has

meaning. Because
∏n

i=1(1/di!) is the same for any parameter combination, it therefore

cancels in such ratios, and we can thus write

L ∝
n∏

i=1

mdi
i e

−mi . (3)

This number can be either gigantic or tiny, and thus it is more convenient to work with its

log, and to use differences in log likelihoods:

lnL = C +
n∑

i=1

[di ln(mi)−mi] , (4)

where C is a constant that never enters the calculations; thus we can set C = 0.

Please write codes to compute χ2 and lnL for any data set di and model expectations

mi; we will use these codes, and incorporate them into more involved codes, throughout the

course. In particular, it will be important for you to use your χ2 and lnL codes in other

codes, so please write them as easily-incorporated subroutines (where the inputs are the data

vector di and the model vector mi).

In particular, use the data sets on the website (data3 1.txt, data3 2.txt, data3 3.txt,

and data3 4.txt) to estimate a single parameter for rolls of a die. Our model is that the
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probability of getting a 1 is 1−p, and the probability for getting a 2, 3, 4, 5, or 6 is p/5. Let

our prior probability density be uniform in p, from p = 0 to p = 1. Based on each data set,

what is the posterior probability density for p if we use the Poisson likelihood? How about if

we use Wilks’ Theorem, where we look for ∆ lnL = −0.5 from the maximum for the 68.3%

credible region? How about if we use χ2, where we would use ∆χ2 = 1 from the minimum

for the 68.3% credible region? Note that the χ2 calculation can in this case be performed

analytically, but I recommend that you save time and do it numerically. What conclusions

do you draw?


