
Bayesian Statistics: Intro, and Parameter Estimation

I’ll begin with a categorical statement: observed data have neither uncertainties nor

errors.

If you had never thought about these issues before, that might strike you as reasonable.

The data are the data; you measure what you measure, so why should there be uncertainties

or errors?

But you almost certainly have thought about these issues before, and given your previous

thought I suspect that you are now bubbling over with objections. Of course there are

uncertainties in the data! Your measuring instruments aren’t perfect, and in any case we

know about fluctuations in data, so the data must at least have uncertainties. In addition, it

is hard to imagine that any real measuring instrument wouldn’t be at least somewhat biased.

For example, the calibration of an instrument isn’t perfectly understood, so if we measure

(say) the flux from a source, the real flux will be something different. So surely data have

errors as well as uncertainties?

In fact, no. Confusion can easily arise because many of the things that we think of as

measurements are actually inferences from the true, raw data. Take measurement of flux as

an example. We never measure flux directly, although it may seem that we do. In reality,

we measure the direct response of the detector (voltages through a CCD, or counts in a

detector, or something like that, are closer to the direct measurement, although it’s still not

there) and then use a model of the detector to make our best estimate of the flux. In terms

of biases, the fault isn’t in the data, it’s in the model you have of your detector. The direct

measurement gives specific values, with no uncertainties or errors. Put another way, your

detector responds somehow to the photons (or whatever) that interact with it. There is

systematic error in the way that you model your detector, but that’s not the same thing as

saying that there are errors in the data.

One consequence of this is that most plots you’ve ever seen in astronomy that have error

bars are misleading in a fundamental way because they suggest that the data have errors. In

addition, the way that χ2 analyses are often used is wrong, because they associate statistical

uncertainty with the data (although in a true χ2 test that’s not the case).

But astronomers aren’t idiots, so what gives? The answer is that there are some circum-

stances in which the correct analysis can be reasonably well-approximated by associating a

“standard error” with the data (shudder; better to call this “standard uncertainty”), and

indeed by using Gaussian statistics. But the path we’re encouraging in this course, and for

any analysis you do, is to make any such choices with eyes open, so that you know what

corners you are actually cutting and how that might affect the accuracy and precision of

your analysis.



So what’s a good way to perform statistical analyses? My experience has made me com-

fortable with a generalized Bayesian approach. Indeed, more and more areas of astronomical

analyses are using Bayesian statistics. Many people, reasonably enough, like the philosoph-

ical clarity of Bayesian statistics in contrast to the statistics you might normally encounter

(which is called “frequentist” statistics). However, from my standpoint the philosophy isn’t

nearly as important as the practical results. What has convinced me over the years that

Bayesian analysis is a good way to go is that it provides clear, correct, and precise inference

in a wide variety of tasks. Thus in this class we’ll go over some of the basics of Bayesian

statistics and then do a simple example that compares Bayesian analysis using a Poisson log

likelihood, with a chi squared analysis.

Bayes’ Theorem

Suppose that we have two events, A and B, each with some probability. We consider

the probability that both happen: P (A and B). This is equal to the probability of B by

itself, times the probability that A happens given that B happened:

P (A and B) = P (A|B)P (B) , (1)

where P (A|B) is the conditional probability that A happens if B happens. Note that A

isn’t required to depend on B; for example, if A and B are completely independent, then

P (A|B) = P (A), but that isn’t the general form. We can also write this the other way

around:

P (A and B) = P (B|A)P (A) . (2)

Therefore P (A|B)P (B) = P (B|A)P (A), which also means that we can write

P (A|B) =
P (B|A)P (A)

P (B)
, (3)

as long as P (B) 6= 0. This is Bayes’ Theorem.

The power of this for statistical analysis comes from replacing A with a particular

hypothesis (e.g., that the temperature of a blackbody is 7,312 K) and B with the data you

have in hand. Then the factors in this equation may be interpreted as follows:

• P (A|B) is the probability of the hypothesis given the data and prior information.

• P (B|A) is the probability that the data would be observed if the hypothesis were true.

• P (A) is the prior probability of the hypothesis being true (in other words, the proba-

bility you assigned to the hypothesis before you took the data).

• P (B) can be considered as a normalizing constant, given that probabilities must inte-

grate to unity.



P (B|A) is sometimes called “the likelihood of the data given the model”.

Let’s now be a little more specific, and then let’s go into a particular example. Say

that your data come in discrete intervals (which we’ll call “counts”), and that the counts are

independent of each other. Schematically, we imagine dividing data space up into “bins”,

which could be bins in energy channel of our detector, location on the sky, time of arrival,

or any of a number of other things. Suppose that in a particular model m, you expect there

to be mi counts in bin i. Then if the model is correct the probability of actually observing

di counts in bin i of the data is, from the Poisson distribution,

Li =
mdi
i

di!
e−mi . (4)

Note that mi can be any positive real number, whereas di must be a nonnegative integer.

Note also that the sum of Li from di = 0 to ∞ is 1 for any mi, and that the integral of Li
from mi = 0 to mi =∞ is 1 for any di. The likelihood for the whole data set is the product

of the likelihoods for each bin:

L =
∏ mdi

i

di!
e−mi . (5)

Thus P (B|A) (from our previous notation) is L. Read as a probability distribution in di, L
becomes better and better approximated by a Gaussian as mi increases.

If we want to estimate the parameters of a model, only the ratios between the likelihoods

matter. Because the factor
∏

1
di!

is independent of the model (it depends only on the data),

we can factor that out to write

L ∝
∏

mdi
i e

−mi . (6)

In some circumstances (but not all! Be careful...) we normalize the model so that it has the

same total number of counts as the data. If we do that, then because∏
e−mi = e−

∑
mi (7)

this is also a common factor that we can divide out.

Now let’s apply this approach to some data, which will allow us to compare this type

of inference with how χ2 is often (incorrectly) used. I promise we’ll get to real astronomical

data as soon as possible, but for these initial concepts it will often be useful for us to use

synthetic examples.

Say that you flip a coin 10 times and you get 4 heads and 6 tails. Your model is that the

probability of heads coming up in a given throw is a, and thus that the probability of tails

coming up in a given throw is 1 − a. Here we will fix the number of throws at 10 (i.e., the

actual number!), which means that in our model we would expect 10a heads and 10(1− a)

tails; note that our two bins are the number of heads and the number of tails. The likelihood



of the data given the model (with parameter a) is then

L(a) =

(
(10a)4

4!
e−10a

)
×
(

(10(1− a))6

6!
e−10(1−a)

)
. (8)

We can rewrite this as

L(a) =
104

4!

106

6!
e−10a4(1− a)6 . (9)

Because only the ratio of likelihoods matters in our estimation of a, we can cancel out all of

the factors in front to leave

L(a) ∝ a4(1− a)6 . (10)

Note, though, that the likelihood is only one of the factors that we need to get the posterior

probability density P (A|B). We also have to multiply by the prior probability for a. Now,

by its nature a has to be somewhere between 0 and 1. More on priors later, but for our

current purposes let’s say that a has an equal probability of being anywhere between 0 and

1. Then in that special case, the posterior probability density is simply proportional to the

likelihood. We will label the posterior probability density P (a) = L(a)p(a) (where p(a) is

the prior probability density for a, which in this case we set to 1 across the whole range a = 0

to a = 1). Because P is a probability density, when it is properly normalized
∫ 1

0
P (a)da = 1

(in the same way that the prior probability density was normalized,
∫ 1

0
p(a)da = 1).

What can we do with that posterior probability density? As a first step, let’s deter-

mine where we have our maximum probability (i.e., the mode). We get that by taking the

derivative of L with respect to a and setting it to zero. This gives:

4a3(1− a)6 − 6a4(1− a)5 = 0

4(1− a)− 6a = 0

a = 0.4 .

(11)

That’s intuitive; with no other information, our best guess is that the true probability exactly

reflects the data.

But we almost always want more than just the best value; we also want to be able to say

that, with some probability, a is in a particular range. In Bayesian parlance, we would like to

know the “credible region” to some level of probability. To get an idea of what this means,

we calculate and plot the normalized posterior probability density as a function of a in the

figure. Note that the probability density can exceed 1; it is the integral of the probability

density that must equal 1.

When we look at the figure we see that the probability density is not symmetric around

the peak. For example, at a = 0.2 the probability density is about 0.95, whereas at a = 0.6

the probability density is about 1.2. This introduces an ambiguity in the definition of the

credible region. Should we, for example, start at the peak and move symmetrically to smaller



Fig. 1.— Posterior probability density for the probability a of heads after ten flips that produced

four heads and six tails. Here our prior was that any value of a from 0 to 1 was equally likely.

Note that, as a result, the posterior probability density peaks at a = 0.4, and that the probability

density is asymmetric around that peak.



and larger values of a until we get to some total probability? Should we begin from a = 0

and find the value of a that gives us an integral equal to a specified probability? Should

we find the smallest region that contains the specified probability? The smallest contiguous

region that contains the specified probability?

We’ll choose the last of these, for illustrative purposes. Suppose that we want a 68.3%

credible region (which we choose because this corresponds to the probability between −1σ

and +1σ for a Gaussian distribution). Then the minimum-width contiguous range that

includes this probability goes from a = 0.264 to a = 0.547, for a total width of ∆a = 0.283.

What if we were to try to use χ2 in the incorrect way it is often used, where uncertainty

is associated with the data? Now, no one in their right mind would do this when there are

only 4 counts in one bin and 6 in the other, but suppose that we blindly did it anyway. The

way that most people in astronomy compute chi squared is to sum the ratio of the squared

difference between the data and model at each data point, and divide by the variance that

we associate with the data (the way it was introduced, you divide instead by the variance

that you associate with the model, which is closer to the Bayesian approach although it’s

still very wrong if your model predicts a small number of counts in enough bins). If our

data are simply counts, then in the Gaussian limit the variance in a given bin is equal to the

number of counts in that bin of the data. Then for a heads fraction of a, the data-variance

chi squared for our data is

χ2 =
∑
i

(mi − di)2

σ2
i

=
∑
i

(mi − di)2

di
=

(10a− 4)2

4
+

(10(1− a)− 6)2

6
, (12)

which we can expand as χ2 = 5
3
(5a − 2)2. The minimum χ2, which in this particular case

(but not in general) is χ2 = 0, is again a = 0.4. When we look up a chi squared table,

we see that for one parameter (a in our case), the 1σ region is determined by looking for

regions where the chi squared is 1 greater than the minimum: ∆χ2 = 1. Performing this

operation faithfully tells us that according to the χ2 prescription, our 68.3% range should

be from a = 0.245 to a = 0.555, for a total width of ∆a = 0.31. What we see, therefore, is

that our log likelihood procedure gets a somewhat tighter region than we get from a blind

application of chi squared. The chi squared isn’t too bad, even in this circumstance, but it

doesn’t get us the correct probability distribution.

For completeness, let’s do this again by performing a chi squared test the way it should

be performed: by having the denominator be the model variance. The χ2 assumption is

again that the variance is equal to the expected (not observed in this case!) value:

χ2 =
∑
i

(mi − di)2

σ2
i

=
∑
i

(mi − di)2

mi

=
(10a− 4)2

10a
+

(10(1− a)− 6)2

10(1− a)
. (13)

As you can see, compared with the data-variance version of the χ2 test (which, again, is



commonly used in astronomy!), extreme values of a are penalized much more (a → 0 and

a → 1 both cause χ2 → ∞). The minimum χ2 is again 0 at a = 0.4. For the correct

model-variance χ2, ∆χ2 = 1 gives us a range of a = 0.2611 to a = 0.5571.

Now it’s your turn, using the data sets on the website. Based on the data sets, what

are the posterior probability densities for p if we use the Poisson likelihood? What if we use

Wilks’ Theorem (see the Appendix) with the Poisson log likelihood? How about if we use

χ2? What is the 68.3% credible region using each method? Note that the χ2 calculation

can in this case be performed analytically, but I recommend that you save time and do it

numerically. What conclusions do you draw?

In practice, likelihood analyses usually use the natural log of the likelihood rather than

the likelihood itself. That’s because products of exponentials and powers can often lead to

values that are huge or tiny, which makes them difficult to use. Logs are better behaved. In

that case, note that it is the difference between log likelihoods that we need to use, because

that corresponds to the ratio between likelihoods.

Now let’s return to the issue of priors. In our analysis above, we assumed that all allowed

values of a (i.e., 0 to 1, since a is a probability) are equally likely. In practice this does not

have to be the case. You’ve probably had plenty of experience in flipping coins, and you

know that the probability of heads is pretty close to 0.5. Thus although in our example we

concluded that a = 0.4 is the most probable value, you’d probably need a lot of convincing

to conclude that a standard coin has a heads probability of a = 0.4. Would getting 40 out of

100 throws do it? Probably not. 400 out of 1000? Maybe you’d be suspicious at that point.

What this tells us is that we actually always have prior probabilities in mind. As a more

astronomical example, if you estimate the radial pulsation speed of a star you would not

accept an answer that is three times the speed of light. In Bayesian statistics, you have to

specify your prior explicitly.

I must say that priors were a sticking point for me when I first encountered Bayesian

statistics. The normal statistics you use give the impression that they’ll just tell you the

answer, with no subjective priors. This, however, is a bit misleading. There are plenty of

things you assume as known (speed of light, Planck’s constant, etc.) even without realizing

it, and those are priors. One can say with some justification that if you try several rea-

sonable priors and these give you wildly different answers, your data didn’t contain enough

information to judge between them, so you can’t say much. It is appropriate to try to select

priors that are as uninformative as possible so that the data speak for themselves.

For next time we will continue with parameter estimation, but this time in a more

astronomically realistic setting where we have a potentially continuous distribution of data.

This is where many astronomers get a nervous tic that compels them to bin data, but as



we’ll see that isn’t necessary!

Appendix: Wilks’ Theorem and its Proof

The likelihood is L =
∏

i pi, where pi is the probability of the data given the model in

bin i. If we are in the limit of Gaussian statistics, then

pi =
1

σi
√

2π
e−(di−mi)

2/2σ2
i (14)

where σ2
i ≈ mi for mi � 1. Thus

lnL = −
∑
i

(di −mi)
2

2σ2
i

+
∑
i

ln

(
1

σi
√

2π

)
= −χ2/2 + const . (15)

Note that for a decent fit, di ≈ mi, which means that you could switch di for mi in the

variance. Therefore 2∆ lnL = −∆χ2 in the Gaussian limit. For example, if you have one

parameter and you are interested in the 1σ range, a look at a χ2 table tells you that ∆χ2 = 1

in that case. Thus to apply Wilks’ Theorem to your log likelihood computation you find

the maximum log likelihood and then determine the range of the parameter that is within

∆ lnL = −0.5 of the maximum.

One of the points of the computational exercise suggested for this class is for you to get

an idea of how well this approximation does in specific cases. Enjoy!


