
How Strongly Correlated are Two Quantities?

Having spent much of the previous two lectures warning about the dangers of assum-

ing uncorrelated uncertainties, we will now address the issue of correlations (albeit without

incorporating the possibility of measurement uncertainties). Correlations abound in astron-

omy, with some of the most famous (such as the quantities plotted on a Hertzsprung-Russell

diagram) becoming the basis for whole fields of study.

Our data set for this lecture comes from Stella, White, and Rosner 1986 (ApJ, 308, 669).

We extract from their Table 1 the rotation frequencies and the maximum X-ray luminosities

for the accreting neutron stars in supergiant X-ray binaries:

frot(Hz) Lx(max)(erg s−1)

0.00143 1× 1037

0.00189 4× 1036

0.00353 6× 1036

0.00387 3× 1036

0.20833 8× 1037

1.42857 6× 1038

We plot these data in Figure 1, in log-log space.

We’d like to know how strongly these two observables are correlated. To do that, we need

to introduce the concept of a covariance matrix (also sometimes called a variance-covariance

matrix).

Covariance matrix

Suppose that we measure several properties each of a number of objects. We’d like to

know whether those properties are correlated, and if so how strongly and whether they are

correlated or anticorrelated. The standard way to do this is to use a covariance matrix.

To define this, recall that the variance of some number of measurements of a variable x is

〈(x−µ)2〉, where µ is the arithmetic mean of x over the measurements and the angle brackets

denote an average over the measurements. If for each object you measure n quantities

x1, x2, . . . xn, then the covariance matrix is

Σ =











〈(x1 − µ1)(x1 − µ1)〉 〈(x1 − µ1)(x2 − µ2)〉 · · · 〈(x1 − µ1)(xn − µn)〉

〈(x2 − µ2)(x1 − µ1)〉 〈(x2 − µ2)(x2 − µ2)〉 · · · 〈(x2 − µ2)(xn − µn)〉
...

...
. . .

...

〈(xn − µn)(x1 − µ1)〉 〈(xn − µn)(x2 − µ2)〉 · · · 〈(xn − µn)(xn − µn)〉













Fig. 1.— Log10 of the neutron star rotation frequency versus log10 of the maximum X-ray luminosity

for six supergiant X-ray binaries. Original data from Table 1 of Stella, White, and Rosner 1986

(ApJ, 308, 669).



You can see that the matrix is symmetric (the ij component equals the ji component

for any i and j). If we designate the standard deviations of the variables by σ1, σ2, . . . , σn,

then we can write the covariance matrix in the form

Σ =











σ2

1
ρ12σ1σ2 · · · ρ1nσ1σn

ρ21σ2σ1 σ2

2
· · · ρ2nσ2σn

...
...

. . .
...

ρn1σnσ1 ρn2σnσ2 · · · σ2

n











Here ρij is Pearson’s correlation coefficient between variables xi and xj; clearly ρij = ρji.

ρij can have any value between −1 (a perfect anticorrelation) to +1 (a perfect correlation),

and ρij = 0 means that the two variables are not correlated at all.

An aside: principal component analysis.—Believe it or not, our setup so far has allowed

us to go much of the way toward principal component analysis, which is a technique of-

ten used to make some sense out of balls of data. Correlation coefficients only test linear

correlations between pairs of parameters. But there are plenty of cases in which multiple

parameters might align with each other in some fashion. For example, this is the basis for

various “fundamental planes” in different areas of study (e.g., the relation between the ef-

fective radius, the average surface brightness, and the central velocity dispersion of elliptical

galaxies).

You’d like to be able to extract linear combinations of the measured parameters that

have significant correlations with each other. A simple way to do this is to construct the

covariance matrix as above, and then find the eigenvalues and eigenvectors of the matrix

(I use “jacobi.c” from Numerical Recipes, which works for real symmetric matrices such

as the covariance matrix). The eigenvectors give the linear combinations of your original

parameters corresponding to the eigenvalues. The largest eigenvalue indicates the longest

axis, i.e., the direction in which your quantities are most correlated, your second-largest

eigenvalue indicates the direction with the second-largest correlation, and so on.

For example, for our data set above, we have two quantities and therefore two eigen-

value/eigenvector combinations. The larger eigenvalue is 1.94 and the associated eigenvector

is (0.815065,0.57937); note that the first coefficient is for log
10
frot(Hz) and the second is for

log
10
Lx(max)(erg s−1), so this points in the lower-left to upper-right direction that is obvi-

ously the primary correlation direction. The smaller eigenvalue is 0.042 and the associated

eigenvector is (-0.57937,0.815065). Note that the eigenvectors are orthonormal due to the

algorithm used in jacobi.c. For more complicated data sets, with many measured quantities,

principal component analysis can help you find linear combinations of parameters that are

potentially significantly correlated.

Now back to correlation coefficients. This sounds easy! In our case we only have two



variables, so we just plug the numbers into the tables and compute ρ12 between the frequency

and the maximum luminosity (not between the log frequency and the log luminosity). We

find that ρ12 = 0.9997.

What?!? That’s ridiculous; do the data look like they form a perfect straight line? Have

we performed the calculation incorrectly?

No, but we have run into a problem with blind use of the correlation coefficient. What’s

going on can be seen more clearly in Figure 2: two of the points have much higher luminosity

and rotation frequency than the others, and the line between those two points happens to

more or less pass through the origin. The remaining four points are pretty well scattered,

but because all of those stars have low luminosities and rotation frequencies, they look like

a point.

Now it’s your turn: calculate the correlation coefficient between the frequency and

maximum X-ray luminosity for Be X-ray binaries (the data set on the website is also taken

from Stella, White, and Rosner 1986). What do you get? What do you get if you remove a

point or two? Do you draw any particular conclusions?

Our analysis leads us to realize the first problem with the Pearson’s correlation coeffi-

cient:

The coefficient is highly sensitive to a large range in values

We can sharpen our understanding of the problem by removing the 0.20833 Hz point from

our data set and recalculating the correlation coefficient. Now instead of a mere 0.9997, the

correlation coefficient becomes 0.99994(!). Thus the huge range of values, and in particular

the large span between the largest-luminosity (and largest-frequency) point and all the other

points, has the effect of collapsing the entire data set into two points: the high point and all

the rest. In astronomy, particularly with relatively small data sets, it is fairly common that

the biggest of the set (whatever “biggest” would mean in that context) is much bigger than

the next biggest. Thus if you just throw the data into your code to compute the correlation

coefficient, you could incorrectly convince yourself that you have a strong correlation.

Just for fun, I decided to pursue this by generating a synthetic data set in which one point

was at (x, y) = (1000, 1000) and the rest had x and y drawn randomly and independently

from 0 to 1. Even when there were 99 random points, the formal correlation coefficient was

0.97. With no other context, you would thus conclude that x and y are strongly correlated.

But if you eliminate the single high point, they aren’t correlated at all. This leads to the

second problem:

It is not easy to define what the correlation coefficient means

Suppose that you have a correlation coefficient of 0.3. Or 0.97. Or 0.9997. Does this



Fig. 2.— Neutron star rotation frequency versus the maximum X-ray luminosity for six supergiant

X-ray binaries. These are the same data as we plotted in Figure 1. Now however, what strikes

the eye are two points in a line that points back to the cluster of four points at lower luminosity.

A standard calculation of the correlation coefficient returns a value of ρ = 0.9997; does this make

sense, give the log-log plot in Figure 1?



imply that the quantities are strongly related to each other? As we’ve seen, that’s not easy to

tell. Even if you think that you have shown that two quantities really are strongly correlated

(say, for example, that you’ve done 100 measurements and there are no big outliers), you

have to keep in mind that correlation does not necessarily imply causation. For example,

did you know that there is a strong tendency for elementary school students with larger feet

to spell better? It’s actually true!

And finally, our last problem:

The Pearson correlation coefficient only tests linear correlations

Look at Figure 3. This is an unnecessarily detailed plot of y = x2. Clearly, x and y are

strongly correlated with each other. And yet, the Pearson’s correlation coefficient between

them is 0. The particular answer returned by a Pearson’s correlation coefficient analysis only

relates to linear correlations. You could, of course, look at this plot, guess that something

like y = x2 is involved, and try to correlate the square root of y with x. But in a more

complex situation the choices might not be as obvious.

So what should you do?

It’s not an easy question. The calculation of linear correlation coefficients is easy and

relatively fast (as long as you don’t have too many data points or variables). In the spirit

of fast exploration I’d be happy to calculate the linear correlation between two quantities,

but one might argue that simply plotting x versus y would achieve the same effect. Indeed,

the plot might do better if your intent is to explore correlations, because your eye can pick

up patterns that are more elaborate than mere lines. The risk in that case is that your eye

will pick up patterns that aren’t there; for our ancestors, seeing a leopard that isn’t there

had much less downside than not seeing a leopard that is there, which might help explain

our tendency to impose patterns on data!

If we want to be rigorous Bayesians, we need to specify in advance what relation we’re

looking at. Let’s think about how we would proceed.

A typical application of a correlation coefficient is to get a sense for whether two quan-

tities are linearly related to each other. But this doesn’t require anything special, from the

Bayesian perspective. Suppose that we have two quantities, x and y, and we’d like to know

whether there is a linear relation between them. Our two models are:

Model 1: x and y are not related, which is to say that if we use x as the independent

variable, our hypothesis is that y = y0, a constant, independent of x. Thus this model has

as its single parameter y0.

Model 2: x and y are linearly related, which is to say that y = ax+ b if we use x as the

independent variable. Thus this model has two parameters: a and b.



Fig. 3.— A plot of y = x
2 from x = −50 to x = +50. Although the correlation is obvious, the

Pearson’s correlation coefficient is zero, because it measures only linear correlations.



Note that Model 1 is a special case of Model 2, in which a = 0. We can do model

comparison as before, by computing the Bayes factor given the data. If we explicitly assume

that prior to analyzing the data, we give equal probability to Model 1 and Model 2, then

the final odds ratio is just the Bayes factor.

What would emerge from this analysis is specifically meaningful; it tells us the degree

to which a linear relation between the two specified quantities is preferred to having those

quantities unrelated. In addition, of course, we can easily put in more complex models (for

example, quadratic relations).

But going back to the question of “what should you do?”, there is an important point to

make. Suppose that you don’t know what you are looking for. You plot your data, and some

pattern seems evident. Maybe it’s a linear relation, maybe it’s something else. Now, you

have something specific to examine, so you want to know how significant it is. You therefore

do a test for a linear correlation, or do a model comparison of models suggested by the data,

or something else, and report the resulting significance.

Do you see the problem? If you proceed in this way, you are succumbing to a posteriori

analysis. That is, you saw something interesting and then tried to figure out how likely that

particular thing was. That’s a statistical no-no.

In many cases this situation won’t arise. You’ll approach your data looking for something

particular, and will do your analysis based on that. But in other cases, you’re on a fishing

expedition: maybe you have a brand-new survey that might reveal something unexpected.

After all, such discoveries are part of what motivates us to do science! What should you do

then?

If you’re really disciplined, then one recommended approach is to wall off some small

fraction of your data (say, 10%) and designate that as a playground in which you can do any

analysis you want. This is, for example, a method adopted by the LIGO team. The point

is that with that small fraction of your data, you don’t worry about statistical trials or a

posteriori analyses; plot it, look for trends, do lots of test analyses; have fun! After you have

debugged your analysis codes, and after you have decided what you really want to do with

your data, then you analyze the remaining 90%. That analysis is what would count.

Note that it is very important that only the analysis of the remaining 90% count in your

final report. Why? Suppose that you thought you saw a strong trend in the 10% playground

data. If you include that 10% data in your final analysis, then the trend will be there, at

least a little bit. Thus the evidence for the strength of the trend is compromised.

Let me give a specific example that is not hypothetical, but to which I won’t attach

names. One exciting type of analysis these days is the analysis of quasar light curves to

search for periodicities, with the implication that if there is real periodicity in a particular



object then the object might actually be a binary supermassive black hole. That would have

lots of important implications.

Such searches are, however, difficult. Quasar light curves vary a lot, and thus find-

ing periodicities in them is challenging. Various teams have analyzed large data sets and

have claimed significant signals in some cases. Let’s suppose that in a particular case, the

light curves for a few hundred thousand quasars have been analyzed, of which a few tens

are considered to be significant at the 10−5 level (defined somehow; such reports are often

themselves incorrect). That’s more than you might expect by chance, so if we assume that

the analysis was carried out correctly, we have some hope that there might be a few binary

supermassive black holes in the lot. However, given that the significance of any individual

candidate isn’t overwhelming, we’d like to be more confident in the best candidates.

A good way to do that is to accumulate more data. One group, which did that extra

accumulation, then looked at their tens of candidates again, now with the whole data set.

They argued that because they are looking at tens of candidates, rather than the initial few

hundred thousand, their criterion for significance can change: rather than requiring 10−5

(defined somehow), they required only 10−2 because of the smaller number of candidates.

They found that about half their original sample passed that test, so they announced that

they had found very strong confirming evidence of the signals. Hooray!

But hold on. Their 10−2 estimate came from analyzing the whole data set, including the

initial part that convinced them that an individual quasar was a good candidate for binarity.

Thus adding new data took the overall significance from ∼ 10−5 to ∼ 10−2; that is, the new

data strongly reduced the significance of the signal! As a result, their work actually showed

that none of the initial candidates is strong.

If they had used the binary solution from the original data (phase, frequency, and

amplitude) and then analyzed only the new data and found a significance of 10−2 that would

have been different; the analysis would not have been biased by the original data. But that’s

not what they did.

In summary, correlation coefficients have many traps and deficiencies. Be careful!


