
Overview of Gravitational Radiation

As direct detection of gravitational radiation draws nearer, it is useful to consider what

such detections will teach us about the universe. The first such detection, of course, will be

of immediate significance because it will be a direct confirmation of a dramatic prediction of

general relativity: to paraphrase John Wheeler, that spacetime tells sources how to move,

and moving sources tell spacetime how to ripple.

Beyond this first detection, gravitational wave detections will pass into the realm of

astronomy, allowing new observational windows onto some of the most dynamic phenomena

in the universe. These include merging neutron stars and black holes, supernova explosions,

and possibly echoes from the very early history of the universe as a whole. They are also

anticipated to provide the cleanest tests of predictions of general relativity in the realm of

strong gravity.

However, there are important differences from standard astronomy. In electromagnetic

observations, in every waveband there are sources so strong that they can be detected without

knowing anything about the source. You don’t need to understand nuclear fusion in order

to see the Sun! In contrast, as we will see, most of the expected sources of gravitational

radiation are so weak that sophisticated statistical techniques are required to detect them

at all. These techniques involve matching templates of expected waveforms against the

observed data stream. Maximum sensitivity therefore requires a certain understanding of

what the sources look like, hence of the characteristics of those sources. In addition, when

detections occur, it will be important to put them into an astrophysical context so that the

implications of the discoveries are evident.

During this summer school you will get a survey of many aspects of gravitational ra-

diation, from its generation to its detection. In this particular set of lectures, we will focus

on the anticipated sources. As an aside, it is useful to remember that historically the most

interesting sources discovered with a new telescope or satellite have often been unexpected,

and this is also possible with gravitational radiation. However, you can’t sell a large project

by appealing entirely to the unknown, so we should at least describe what we can imagine

at this point!

Before discussing types of sources, though, we need to have some general perspective on

how gravitational radiation is generated and how strong it is. We will begin by discussing

radiation in a general context.

By definition, a radiation field must be able to carry energy to infinity. If the amplitude

of the field a distance r from the source in the direction (θ, φ) is A(r, θ, φ), the flux through a

spherical surface at r is F (r, θ, φ) ∝ A2(r, θ, φ). If for simplicity we assume that the radiation
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is spherically symmetric, A(r, θ, φ) = A(r), this means that the luminosity at a distance r

is L(r) ∝ A2(r)4πr2. Note, though, that when one expands the static field of a source

in moments, the slowest-decreasing moment (the monopole) decreases like A(r) ∝ 1/r2,

implying that L(r) ∝ 1/r2 and hence no energy is carried to infinity. This tells us two

things, regardless of the nature of the radiation (e.g., electromagnetic or gravitational).

First, radiation requires time variation of the source. Second, the amplitude must scale as

1/r far from the source.

We can now explore what types of variation will produce radiation. We’ll start with

electromagnetic radiation, and expand in moments. For a charge density ρe(r), the monopole

moment is
∫

ρe(r)d
3r. This is simply the total charge Q, which cannot vary, hence there

is no electromagnetic monopolar radiation. The next static moment is the dipole moment,
∫

ρe(r)rd
3r. There is no applicable conservation law, so electric dipole radiation is possible.

One can also look at the variation of currents. The lowest order such variation (the “magnetic

dipole”) is
∫

ρe(r)r × v(r)d3r. Once again this can vary, so magnetic dipole radiation is

possible. The lower order moments will typically dominate the field unless their variation is

reduced or eliminated by some special symmetry.

Now consider gravitational radiation. Let the mass-energy density be ρ(r). The monopole

moment is
∫

ρ(r)d3r, which is simply the total mass-energy. This is constant, so there cannot

be monopolar gravitational radiation. The static dipole moment is
∫

ρ(r)rd3r. This, how-

ever, is just the center of mass-energy of the system. In the center of mass frame, therefore,

this moment does not change, so there cannot be electric dipolar radiation in this frame

(or any other, since the existence of radiation is frame-independent). The equivalent of the

magnetic dipolar moment is
∫

ρ(r)r × v(r)d3r. This, however, is simply the total angular

momentum of the system, so its conservation means that there is no magnetic dipolar grav-

itational radiation either. The next static moment is quadrupolar: Iij =
∫

ρ(r)rirjd
3r. This

is not conserved, therefore there can be quadrupolar gravitational radiation.

This allows us to draw general conclusions about the type of motion that can generate

gravitational radiation. A spherically symmetric variation is only monopolar, hence it does

not produce radiation. No matter how violent an explosion or a collapse (even into a black

hole!), no gravitational radiation is emitted if spherical symmetry is maintained. In addition,

a rotation that preserves axisymmetry (without contraction or expansion) does not generate

gravitational radiation because the quadrupolar and higher moments are unaltered. There-

fore, for example, a neutron star can rotate arbitrarily rapidly without emitting gravitational

radiation as long as it maintains axisymmetry.

This immediately allows us to focus on the most promising types of sources for gravita-

tional wave emission. The general categories are: binaries, continuous wave sources (e.g., ro-



– 3 –

tating stars with nonaxisymmetric lumps), bursts (e.g., asymmetric collapses), and stochas-

tic sources (i.e., individually unresolved sources with random phases; the most interesting

of these would be a background of gravitational waves from the early universe). We will

discuss each of these in subsequent lectures.

For now, however, it will be useful to reconsider gravitational waves from the standpoint

of dynamic changes in spacetime. We will begin by reviewing some relevant aspects of general

relativity.

To characterize the warping of spacetime, we define the metric tensor gαβ as follows.

Suppose that there are two events A and B, determined by four coordinates each in a

four-dimensional spacetime. Suppose in particular that these events are very close to each

other, in the sense that the difference in each of their four coordinates is xα
A − xα

B = dxα,

an infinitesimal quantity. The four-dimensional “distance” ds between these events is then

given by

ds2 = gαβdxαdxβ . (1)

Here we use the convention that greek indices run over all four spacetime coordinates, and

also use the Einstein summation convention by which repeated indices are summed over

all coordinates, e.g., vαuα = v0u0 + v1u1 + v2u2 + v3u3, where 0, 1, 2, 3 represent the

coordinates. The quantity ds transforms as a scalar, meaning that all observers will measure

the same ds between two given events that are infinitesimally close to each other. This is

the reason that ds is called the “invariant interval”. Note, incidentally, that ds = 0 for any

two events connected by a photon. One can also define the matrix inverse gαβ of gαβ, so that

gαβgβγ = δα
γ , the Kronecker delta.

It is important to remember that there is complete freedom in choosing the coordinates

xα. A point on the plane can be described by Cartesian coordinates or polar coordinates,

but it’s still in the same place! That means that for a given problem we can choose coor-

dinates based on convenience or because they bring out the physics in a clear way. This

coordinate freedom is also called gauge freedom. With this perspective, a given spacetime

can be represented with many different coordinate systems. The values of the metric tensor

components at different events will depend on the system used, but the spacetime (also called

the geometry) will be the same.

Note that no matter how warped any spacetime is, any sufficiently tiny patch looks flat

unless that patch is on a singularity (which has infinite curvature). That is, at any given

point in spacetime, it is always possible to come up with a local coordinate system that looks

like flat spacetime to linear order, with interval (in Cartesian coordinates)

ds2 = ηαβdxαdxβ = −dt2 + dx2 + dy2 + dz2 . (2)
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Locally, the only deviations will be of quadratic order O(dxαdxβ). This is a statement of

the equivalence principle. Another way of saying this is that for a small enough region of

space and short enough period of time, if you are in free fall then you can always boost to a

frame in which all experiments give the same result as if there is no gravity. A consequence

of this is that an infinitesimal particle in free fall feels no acceleration (as measured locally

by an accelerometer) no matter how warped a (non-singular) spacetime is.

When we consider gravitational waves, it is convenient to separate the spacetime into

a component that is time-independent (the background spacetime) and a component that

varies with time (the gravitational waves). It is a useful starting point to assume that we

are making measurements far enough from any mass that the background spacetime is flat.

We will now assume that the time-dependent metric produced by gravitational waves is

gαβ = ηαβ + hαβ , (3)

where hαβ is so small that we only need to consider its linear contribution to any equation.

Among other things, that means that indices are raised and lowered using η. Therefore, up

and down spatial indices are identical, whereas up and down time components differ only in

sign.

We can now construct the linearized version of the Einstein field equation. We will

simply state the results, which we will derive in more detail in the problem sets. First, the

Christoffel symbols are

Γα
βγ =

1

2

(

hα
β,γ + hα

γ,β − h ,α
βγ

)

(4)

where the commas indicate partial derivatives. The linearized Riemann tensor is

Rα
βγδ = Γα

βδ,γ − Γα
βγ,δ

= 1

2

(

hα
δ,βγ + h α

βγ,δ − h α
βδ,γ − hα

γ,βδ

)

.
(5)

A single contraction of this forms the Ricci tensor:

Rαβ = Rγ
αγβ =

1

2

(

hγ
α,γβ + h γ

βγ,α − h γ
αβ,γ − hγ

γ,αβ

)

. (6)

Note that hγ
γ ≡ h is the trace of the metric perturbation,and that the derivative γ

,γ ≡ ⊓⊔ =

∇2 − ∂2

t is the wave operator. A second contraction gives the curvature scalar:

R = Rα
α = hγ α

α,γ − ⊓⊔h . (7)

Finally, we have the linearized Einstein tensor:

Gαβ = Rαβ −
1

2
ηαβR

= 1

2

(

hγ
α,γβ + h γ

βγ,α − ⊓⊔hαβ − h,αβ − ηαβhγ δ
δ,γ + ηαβ⊓⊔h

)

.
(8)
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A notation change simplifies this a bit. We used the “trace-reversed” perturbation h̄αβ ≡

hαβ −
1

2
ηαβh. When we change from h to h̄ we find that all the terms with the trace are

canceled, leading to

Gαβ =
1

2

(

h̄γ
α,γβ + h̄ γ

βγ,α − ⊓⊔h̄αβ − ηαβh̄γ δ
δ,γ

)

. (9)

In addition, we can make use of our coordinate freedom to impose the gauge condition

h̄ ,α
αβ = 0. With this condition we find the remarkably simple expression

Gαβ = −
1

2
⊓⊔h̄αβ (10)

so that the linearized Einstein equation Gαβ = 8πTαβ (where T is the stress-energy tensor)

becomes

⊓⊔h̄αβ = −16πTαβ (11)

or in a vacuum

⊓⊔h̄αβ = 0. (12)

This is clearly a wave equation, just as in electromagnetism.

It is now standard (and appropriate) to specialize further. We specialize to globally

vacuum, asymptotically flat spacetimes (where Tαβ = 0 and there is minimal curvature in the

measurement region; this is an excellent approximation for any terrestrial experiments!). It

then turns out that we have some remaining local gauge freedom, which we can fix completely

by going into the transverse traceless, or TT, gauge. In this gauge the metric perturbation

is purely spatial:

htt = hti = 0 (13)

and traceless: h = h i
i = 0. This is the usual gauge for gravitational wave physics. It also

indicates that, given a propagation direction, there are two independent polarization compo-

nents, as in electromagnetism, but they have different character than the linear polarization

of EM waves.

We close this lecture with some order of magnitude estimates. What is the approximate

expression for the dimensionless amplitude h of a metric perturbation, a distance r from

a source? We argued that the lowest order radiation had to be quadrupolar, and hence

depend on the quadrupole moment I. This moment is Iij =
∫

ρrirjd
3x, so it has dimensions

MR2, where M is some mass and R is a characteristic dimension. We also argued that the

amplitude is proportional to 1/r, so we have

h ∼ MR2/r . (14)
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We know that h is dimensionless, so how do we determine what else goes in here? In GR we

usually set G = c = 1, which means that mass, distance, and time all have the same effective

“units”, but we can’t, for example, turn a distance squared into a distance. Our current

expression has effective units of distance squared (or mass squared, or time squared). We

note that time derivatives have to be involved, since a static system can’t emit anything.

Two time derivatives will cancel out the current units, so we now have

h ∼
1

r

∂2(MR2)

∂t2
. (15)

Now what? To get back to physical units we have to restore factors of G and c. It is useful

to remember certain conversions: for example, if M is a mass, GM/c2 has units of distance,

and GM/c3 has units of time. Playing with this for a while gives finally

h ∼
G

c4

1

r

∂2(MR2)

∂t2
. (16)

Since G is small and c is large, the prefactor is tiny! That tells us that unless M and R are

large, the system is changing fast, and r is small, the metric perturbation is minuscule.

Let’s make a very rough estimate for a circular binary. Suppose the total mass is

M = m1 + m2, the reduced mass is µ = m1m2/M , the semimajor axis is a, and the orbital

frequency Ω is therefore given by Ω2a3 = GM . Without worrying about precise factors, we

say that ∂2/∂t2 ∼ Ω2 and MR2 ∼ µa2, so

h ∼ (G2/c4)(1/r)(µM/a) . (17)

This can also be written in terms of orbital periods, and with the correct factors put in we

get, for example, for an equal mass system

h ≈ 10−22

(

M

2.8 M⊙

)5/3 (

0.01 sec

P

)2/3 (

100 Mpc

r

)

, (18)

which is scaled to a double neutron star system. This is really, really, small: it corresponds

to less than the radius of an atomic nucleus over a baseline the size of the Earth. That’s

why it is so challenging to detect these systems!

Remarkably, though, the flux of energy is not tiny. To see this, let’s calculate the flux

given some dimensionless amplitude h. The flux has to be proportional to the square of the

amplitude and also the square of the frequency f : F ∼ h2f 2. This currently has units of

time squared, but the physical units of flux are energy per time per area. Replacing factors

of G and c, we find that the flux is

F ∼ (c3/G)h2f 2 . (19)
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Now the prefactor is enormous! For the double neutron star system above, with h ∼ 10−22

and f ∼ 100 Hz, this gives a flux of a few hundredths of an erg cm−2 s−1. For comparison,

the flux from Sirius, the brightest star in the night sky, is about 10−4 erg cm−2 s−1! That

means that if you could somehow absorb gravitational radiation perfectly with your eyes,

you would find untold billions of sources brighter than every star except the Sun. What this

really implies, of course, is that gravitational radiation interacts very weakly with matter,

which again means that it is mighty challenging to detect.


