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Special relativity is a generalization of Galilean relativity that allows comparison of

reference frames that move past each other at close to the speed of light. The lion’s share of

the credit for development goes to Einstein, but many others contributed as well. Starting

with relativity, and proceeding even far more so with quantum mechanics, physical theories

left the realm of everyday experience into a domain where our common sense does not work

at all. This has caused many people to be very uncomfortable with these theories, and it is

no surprise that as a result relativity is a favorite target of crackpots. Here we will discuss

the principles of special relativity (which is “special” because it only deals with reference

frames moving past each other at constant speed) and some of its paradoxes. Questions to

keep in mind are:

1. Must science conform to common sense?

2. If, in circumstances beyond our everyday experience, people have different intuitions

about the operation of physics, how can this be communicated to people who have

different intuition or experience?

3. In a change of perspective such as is represented by relativity or quantum mechan-

ics, how much actually changes in our perspective of the universe? Are our previous

deductions still applicable?

4. Fundamentally, how objective is science?

Our third official debate will be held on the third of these topics.

The life of Einstein

Einstein was born in Ulm, Germany in 1879. It is often relayed that he was a poor

student in elementary school, but in fact apart from a slow development of speech he was

actually excellent; the confusion arises from a shift of how the marks were given, with what

were top marks during Einstein’s time reversed in later marking systems. At the age of about

five, Einstein’s father showed him a pocket compass, and Einstein realized that despite the

apparent empty space something must cause the compass to move. This began his physics

career, in which he retained a remarkably independent spirit of inquiry. His resentment of



the regimented teaching of the day meant that although he enjoyed mathematics and physics

and did well in them, he failed examinations in other subjects. One result was that after

obtaining a diploma from the Polytechnic program at Zurich in 1900 he struggled to find

employment, and after two years was only able to become an assistant examiner in the patent

office in Bern, Switzerland. Remarkably, however, this sped his development as a scientist

because he had to get to the physical heart of patent applications. During this period he

published many influential articles, including those in his “miracle year” of 1905 when he

published seminal papers on Brownian motion, the photoelectric effect (for which he got the

Nobel Prize; he never got it for special or general relativity), and special relativity.

After the patent office experience his fame rose gradually until he was appointed to

various academic positions (Zurich, Prague, Zurich again, and Berlin), and in 1933 moved

to the Institute for Advanced Study in Princeton, NJ, largely as a reaction to the growing

threat of Nazism in Germany. In his later life, he became best known as a pacifist who

nonetheless signed a letter to President Roosevelt in 1939 urging the development of the

atomic bomb to combat the threat posed by Germany and Japan.

Einstein’s scientific contributions are profound and far too varied to describe in a short

biography. Suffice it to say that if most physicists were asked to named the greatest physicist

of all time, they would name either Einstein or Newton. Even so, he spent most of the last

thirty years of his life arguing philosophically against quantum mechanics, which is the most

quantitatively successful scientific theory ever developed.

Here we are going to focus on the radical change of perspective initiated by Einstein

(mainly) and others related to what is called special relativity. We will start with statements

about what it means, but will use mathematics to describe it because only in this way can

we be precise, and only in this way can we be clearest about its apparent paradoxes.

Philosophy

First, let’s start with a little philosophy. After the fact, it is easy to present physical

principles as if they are self-evident and derivable from pure mathematics. This is not the

case. We can marvel at the brilliance of Einstein and the other pioneers of relativity, and

appreciate the philosophical way that they drew their conclusions, but to be scientific one

must at some point have contact with experiments. Therefore, ultimately, we have to point

to the universe as a whole (or at least, what we’ve probed observationally) to argue that the

theory is correct.

A second philosophical point that many people mistakenly derive from relativity, prob-

ably because of the name of the theory, is that the essential point is “everything is relative”.

In fact, one of the deepest points about relativity is that there are some quantities that are

invariant, meaning that all observers will measure the same value for those quantities. We’ll



emphasize such invariants when we derive aspects of special relativity.

Galilean Relativity

We should also not get the idea that Einstein was the first one to suggest a principle

of relativity. In fact, as we saw earlier, Galileo used thought experiments quite similar to

Einstein’s to show that something coasting along at a constant velocity should experience

all the same local effects as something at rest. He asked his readers to consider experiments

performed by someone in a ship’s cabin if the ship is moving at a constant speed. He notes

that a ball tossed straight up will appear to come straight down; a tank of water will remain

level; and in general the experimenter will not be able to tell that the ship is moving. From

our standpoint a more familiar and extreme example is traveling in a plane. We might be

going 75% of the speed of sound relative to the ground, but we can still be served bad food

without it ending up in our faces!

Put more formally, all local experiments we do in an inertial frame will turn out the

same independent of our velocity relative to a given frame. However, note the restrictions to

local experiments and inertial frames. If you somehow opened the window of your plane and

stuck your head out, it would be the last thing you ever did; there is a quite clear difference

in physical effects when you have contact with other frames! In addition, when the plane

accelerates (e.g., by hitting turbulence) it is sickeningly clear that you are not at rest. In

more benign situations, such as experiments on a rotating Earth, the non-inertial nature of

the frame leads one to introduce fictitious forces such as the Coriolis force.

How, then, would we phrase Galilean relativity mathematically? A useful way to do this

is to consider two observers moving at a constant velocity v relative to each other. Let us

set up Cartesian coordinate systems for both: for one frame the coordinates are (t, x, y, z)

and for the other are (t′, x′, y′, z′). We will refer to these as, respectively, the unprimed and

primed frames. Here t means time, and we will make our lives easier by ensuring that the x

axis is parallel to the x′ axis, and similarly for y and z.

Suppose that, as seen in the unprimed system, the primed system is moving in the +x

direction with speed v. Note that we can always rotate our coordinate axes so that the x

axis lines up with this speed; if you prefer making your algebra messier you can always do

it more generally, but we won’t bother. If we set up our initial conditions so that at time

t = t′ = 0 we have x′ = 0 (i.e., the origins of the two systems are coincident), this implies

that at time t, the origin of the primed system is at x = vt as measured in the unprimed

system. Of course, in the primed system, the origin is always at x′ = 0. In addition,

the perpendicular directions y and z are equal to their primed counterparts, and t = t′.



Therefore, the coordinate transformation for Galilean relativity becomes

x′ = x − vt

y′ = y

z′ = z

t′ = t .

(1)

We also find that Newton’s laws of motion are invariant in form under these transfor-

mations. This is as expected, and is a consequence of our inability to tell whether we are

moving steadily or not from purely local experiments. Among other things, this law tells us

how velocities should add. Consider, for example, something that moves with speed u in the

x direction as seen in the unprimed frame. Therefore, dx/dt = u. In the primed frame we

have

u′ = dx′/dt′ = d(x − vt)/dt = dx/dt − v = u − v . (2)

This is the simple, intuitive result. If a train goes by me at 100 km/hr and I throw a baseball

parallel to the train at 100 km/hr, someone inside the train sees the ball not moving in that

direction at all. If I throw antiparallel to the train at 100 km/hr, the person in the train sees

a speed of 200 km/hr. Note, by the way, that if we want to transform from the primed frame

to the unprimed frame, all we have to do is reverse the sign of v and switch the primed with

unprimed variables. Very simple.

The Problem with Maxwell’s Equations

In the mid-1800s, however, a problem emerged. After many people had for several

decades experimented with electricity and magnetism, James Clerk Maxwell came up with

a compact set of equations that beautifully described all the phenomena. To this day,

Maxwell’s achievement ranks among the very greatest in the history of physics. Surprisingly,

though, Maxwell’s equations are not invariant under a Galilean transformation. For example,

a blatant contradiction emerges when one tries to determine the speed of light in different

frames with this theory. According to this theory, the propagation speed was the same

whether the source was moving or not, which violates the velocity addition law that we

derived above. This is a result that could be obtained if light propagated through a medium,

similarly to how the speed of sound is independent of the motion of the source (although the

frequency isn’t). In that case, we would expect to measure different speeds depending on our

motion relative to the medium (again, think of the example of sound). However, the famous

Michelson-Morley experiment found no evidence of any “luminiferous ether” through which

light traveled. Given the overwhelming success of Newton’s theories in the previous two

centuries a number of people very logically tried to find formulations of Maxwell’s equations

that obeyed Galilean relativity. None, however, could be squared with experiment. What

could be done?



The Postulates of Special Relativity

Lorentz, Poincaré, Fitz-Gerald, and others suggested essentially ad hoc ways of explain-

ing the above results. Einstein, however, was the one who put it on a more axiomatic

footing, which is why we reasonably give him the lion’s share of the credit. He suggested

two postulates:

• The laws of physics as derived from local experiments are the same for all inertial

observers.

• All such observers measure the same speed for light in a vacuum.

The first postulate is the same one as before. The second, however, seems contradictory;

how is it reconciled with normal velocity addition?

To understand this, and to adopt a perspective that has tremendous utility in gen-

eral relativity, we will consider the fundamental concept of the invariant interval. As our

first step, recall distance invariance in Euclidean geometry. Suppose we have two points

in a three-dimensional space, and in a particular Cartesian coordinate system the points

have coordinates (x, y, z) and (x + dx, y + dy, z + dz). For the situations we consider here,

dx, dy, and dz need not be infinitesimal quantities, but we write it this way for later

compatibility with general relativity (where it is clearest to restrict oneself to infinitesimal

distances). The distance ds between the two points is then given by

ds2 = dx2 + dy2 + dz2 . (3)

This distance is absolutely invariant with respect to coordinate transformations. If you rotate

the axes to some new x′, y′, z′ then in general dx′ 6= dx and so on, but ds′2 = dx′2+dy′2+dz′2 =

dx2 + dy2 + dz2 = ds2. This is also true if you go for a non-Cartesian system, e.g., spherical

polar coordinates. The separation is an invariant.

What about when time is involved? Einstein’s second postulate says that the distance

light travels in a given time is measured to be the same in all frames. It’s easier to deal

with the squares of distances, so if at time t = t′ = 0 the ray started out at the origin of the

unprimed and primed systems (where, remember, the primed system can move relative to

the unprimed system), we would find that

dx2 + dy2 + dz2 = c2dt2

dx′2 + dy′2 + dz′2 = c2dt′2 ,
(4)

where c is the speed of light in a vacuum.

In fact, let’s make a powerful generalization of this. Define an event to be something at

a specific place and time, which must therefore be designated by four coordinates (t, x, y, z).



Consider a nearby event (t+dt, x+dx, y+dy, z+dz), and let the four-dimensional “interval”

ds between the two events be given by

ds2 = −c2dt2 + dx2 + dy2 + dz2 . (5)

We then postulate that, just as in Euclidean geometry the separation between points is

independent of the coordinate system, the interval as defined above is an invariant, so all

inertial observers measure the same interval between the same two events. Note that if the

events are two points on the trajectory of a light ray, ds = 0.

To explore the consequences of this, let us again consider an unprimed frame (t, x, y, z)

and a primed frame (t′, x′, y′, z′). Suppose that, as seen in the unprimed frame, the primed

frame is moving with speed v in the +x direction. Also suppose we have set up the axes so

that initially the unprimed and primed frames are coincident (i.e., x parallel to x′ and so

on) and t = t′ = 0. Our postulate says that

−c2dt2 + dx2 + dy2 + dz2 = −c2dt′2 + dx′2 + dy′2 + dz′2 . (6)

We can argue from symmetry that dy = dy′ and dz = dz′ (Hint: consider viewing the same

situation from different perspectives, and see if you can arrive at a contradiction if dy 6= dy′).

Therefore, we are left with

−c2dt2 + dx2 = −c2dt′2 + dx′2 . (7)

We now look for a transformation between the unprimed and primed frames that maintains

this invariance. The simplest such transformation turns out to be

x′ = γ(x − vt)

y′ = y

z′ = z

t′ = γ(− v

c
2 x + t) .

(8)

Here γ ≡ 1/
√

1 − v2/c2 is the Lorentz factor; note that it is always 1 or greater.

This is a Lorentz transformation. The generalization to arbitrary directions is straight-

forward. As before, to change back, we simply flip the sign of v and exchange primed for

unprimed variables.

Great, but... what the heck! This says that the measurement of time is different in

the two frames! This doesn’t square with our intuition at all. In fact, let’s explore some

consequences that emerge from this comparison between frames in special relativity.

Consequences



As was discovered well before Einstein proposed special relativity, Maxwell’s equations

are invariant in form under a Lorentz transformation. That’s good news. However, there

are other implications that may make the cure seem worse than the disease:

Length contraction.—Suppose that in the unprimed frame we measure the length of a

stick, oriented along the x axis, that is moving in the primed frame and in that frame has

length l. As you may remember from other exposures to special relativity, we have to be

precise in how we specify our measurement: in this case, it will be at a single time t as

measured in the unprimed frame, meaning dt = 0. We then have

dx′ = γ(dx − vdt)

l = γdx

dx = l/γ .

(9)

Because γ ≥ 1 for all speeds v, this means that we measure a shorter length in the frame

in which the stick is moving. If instead the stick is at rest in the unprimed frame and has

length l as measured there, what do we see in the primed frame? The transformation is

x = γ(x′ + vt′)

⇒ dx = γ(dx′ + vdt′)
(10)

hence for dt′ = 0 we again get that in the frame in which the stick is moving, the length is

contracted to l/γ. But this means that in both frames it appears that the other frame’s stick

is contracted!

Time dilation.—Now suppose that in the unprimed frame we look at a clock in the

primed frame. In the primed frame, a time T elapses. How much time goes by in the

unprimed frame? For this problem, we note that

t = γ( v

c
2 x

′ + t′)

⇒ dt = γ( v

c
2 dx′ + dt′) .

(11)

If the clock is at rest in the primed frame then dx′ = 0, so dt = γdt′ = γT . Therefore, the

elapsed time is longer as seen in a frame in which the clock is moving. Thus, again, we get

to something highly counterintuitive: from either frame, the other guy’s clock seems to run

more slowly.

Note that “clock” here is very general indeed, and refers to anything that takes time. It

could be a wristwatch, a chemical process, a nuclear decay, anything at all. At this point,

many people like to consider the “twin paradox”: consider identical twins, one of whom

stays on Earth and the other of whom blasts off in a rocket, accelerates to nearly the speed

of light, travels for a year in her reference frame, then turns around and comes back. The

“paradox” is posed as follows: since both twins consider themselves to be at rest, which one

should be older when they meet after the journey? We’ll return to this at the end of the

lecture.



What does it mean?.—The effects discussed above are counterintuitive, to put it mildly.

The reason, of course, is that we don’t travel anywhere near the speed of light relative to

everyday objects, so we have evolved to be used to Newtonian mechanics. As an example,

the fastest speed that most of us have ever traveled is on airplanes, perhaps up to 270 m s−1.

The speed of light is about c = 3 × 108 m s−1, so the Lorentz factor is γ = 1/
√

1 − v2/c2 ≈
1.00000000000041. That’s four parts in 1013! This actually has been detected using atomic

clocks flying on planes, but in our everyday life we’d never notice it.

Nonetheless, a lot of people are pretty uncomfortable with the implications of special

relativity, which is probably one reason why it is a favorite target of crackpots (another being

that Einstein personally was so famous). It is useful to remember that in the rest frame of

something everything proceeds as normal. Aliens in some distant galaxy might see us appear

to move at 90% of the speed of light, but that can’t possibly affect us at all. This means, for

example, that if I am moving really fast and see a star appear to be contracted by a factor of

10 in my direction of motion, it certainly doesn’t imply that there really are huge pressure

forces inside the star!

There are, however, real effects than can be and have been measured, and it is this

experimental confirmation that gives us confidence in the predictions of special relativity,

counterintuitive though they might be. For example, consider a muon, which is a subatomic

particle that decays with a characteristic lifetime of τ = 2.2 × 10−6 seconds. Suppose we

set one going at v/c = 0.9 of the speed of light. We would expect it to travel a typical

distance D = 0.9c × 2.2 × 10−6 s=590 meters before decaying. Instead, we find that the

typical distance is 1360 meters. What is happening? We’ll analyze this from two different

perspectives:

• From the perspective of the particle, the length of the track on which it is traveling is

smaller by a factor of γ = 2.3. That means that if, in the laboratory frame the track

has a length of 1360 meters, in the particle rest frame it appears to have a length of

590 meters, so in the particle rest frame it lasts the expected 2.2 microseconds and all

is well.

• From the perspective of the laboratory, the lengths are as expected but the muon decay

“clock” runs slowly by a factor of γ and therefore lasts long enough to travel the longer

distance.

Therefore, in both frames, observers agree on the final result. This has to be the case.

In fact, this is a general principle that can help you navigate through tricky situations in

relativity. In a given setup, think about facts or numbers on which every observer must

agree. Examples might include the number of particles in a box, or whether the muon in

the above example reaches the end of a track. These are, if you like, additional examples of



invariants: things that are the same in all frames.

Apparent paradoxes of special relativity

Many people are highly uncomfortable with special relativity because at first glance it

appears that it predicts things that are blatantly contradictory. Here I offer up for discussion

two of the most common.

The barn and ladder paradox.—A very fast runner is handed a 10 meter long ladder and

asked to get it inside a barn that is only 8 meters deep. Her assistant, who is stationary

relative to the barn, computes that she only needs to run a bit over 60% of the speed of

light relative to the barn, because then 1/γ =
√

1 − v2/c2 =
√

1 − 0.62 = 0.8 and thus the

ladder will appear to him to be only 8 meters long. He will then close the barn door after the

ladder is completely inside the barn, thus allowing the ladder to be put inside. The runner,

however, has read a little more of special relativity. She notes that from her perspective, the

barn will seem even shorter than it is. She will see it to be only 0.8 × 8 = 6.4 meters deep,

making it even worse because in her frame the ladder still appears to be 10 meters long.

If they try this experiment, will the ladder ever be completely inside the barn?

The twin paradox.—Pat and Robin are identical twins. On their 20th birthday, Pat

climbs aboard a rocket and sets off on a trip that lasts 10 years in Pat’s frame. Pat then

turns around and takes the trip back to Earth, which also takes 10 years in Pat’s frame.

Pat’s speed on both legs of the trip is 90% of the speed of light. Therefore, Robin reasons

that since the Lorentz factor is γ = 1
√

1 − v2/c2 = 2.3, as Robin sees Pat’s clock advancing

by 20 years over the whole trip, Robin’s clock will therefore advance 2.3 × 20 = 46 years.

Therefore, when they meet, Robin calculates that Pat will be 40 years old and Robin will

be 66 years old.

Pat computes things differently. Pat also sees Robin moving at a relative speed of 90%

of the speed of light. Therefore, Pat computes that Robin’s clock will move a factor of 2.3

times more slowly than Pat’s. This means that whereas Pat will age 20 years, Robin will

age only 20/2.3 ≈ 8.7 years. Thus when they meet back on Earth, Pat will be 40 years old

and Robin will be 28.7 years old.

When they meet, which one will be older?

Summary

Special relativity and much of modern physics (including general relativity and quantum

mechanics) operates far beyond our everyday experience. Their predictions work beautifully

when tested against experiments and observations, but is this enough? Postmodernists have

argued that all scientific theories are socially constructed, and point to the radical change

of perspective from Newtonian physics to propose that no theory including our current ones



has a greater claim to reality than any other. What do you think?


