
Sources of Gravitational Radiation

We now turn our attention to sources of gravitational radiation. From the last lecture,

we know that such sources need to have a time-variable quadrupole (or higher-order) mass

moment. The community has divided such sources into four basic categories:

• Binaries. These obviously have a large and varying quadrupole moment, and have the

additional advantage that we actually know that gravitational radiation is emitted from

them at the expected level (based on observations of double neutron star binaries).

• Continuous sources. A spinning source can in principle emit gravitational waves at a

single frequency for a long time, so the signal builds up in a narrow frequency bin.

As a result, particularly for high frequencies observable with ground-based detectors,

continuous-wave sources are interesting because they can in principle be seen even at

relatively low amplitudes.

• Bursts. These refer to events of very limited duration that do not have to have any

special periodicity. An example would be a core-collapse supernova.

• Stochastic sources. For these, we think in terms of broad bands of frequency with

many sources, rather than the signal produced by an individual source. Examples

include the huge foreground of double white dwarf binaries in our Galaxy, or possibly

a background from the very early universe.

Given that binary sources are the only ones that we know exist at a detectable level,

we’ll focus mainly on them. At the end we’ll have a few comments about the other types of

sources.

First, let’s get an idea of the frequency range available for a given type of binary. There

is obviously no practical lower frequency limit (just increase the semimajor axis as much as

you want), but there is a strict upper limit. The two objects in the binary clearly won’t

produce a signal higher than the frequency at which they touch. If we consider an object

of mass M and radius R, the orbital frequency at its surface is ∼
√

GM/R3. Noting that

M/R3 ∼ ρ, the density, we can say that the maximum frequency involving an object of

density ρ is fmax ∼ (Gρ)1/2. This is actually more general than just orbital frequencies. For

example, a gravitationally bound object can’t rotate faster than that, because it would fly

apart. In addition, you can convince yourself that the frequency of a sound wave through the

object can’t be greater than ∼ (Gρ)1/2. This is thus a general upper bound on dynamical

frequencies.
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This tells us, therefore, that binaries involving main sequence stars can’t have frequencies

greater than ∼ 10−3−10−6 Hz, depending on mass, that binaries involving white dwarfs can’t

have frequencies greater than ∼ 0.1− 10 Hz, also depending on mass, that for neutron stars

the upper limit is ∼ 1000 − 2000 Hz, and that for black holes the limit depends inversely

on mass (and also spin and orientation of the binary). In particular, for black holes the

maximum imaginable frequency is on the order of 104(M⊙/M) Hz at the event horizon, but

in reality the orbit becomes unstable at the innermost stable circular orbit (ISCO). For a

nonrotating black hole the orbital frequency at the ISCO is fISCO = 2200 Hz(M⊙/M) and

thus the gravitational wave frequency for a circular orbit there is fGW = 2fISCO. Prograde

orbits around spinning black holes can get to higher frequencies. Black hole ringdown, i.e.,

the radiation of non-Kerr horizon structure, can get to a factor of a few higher frequencies.

Now suppose that the binary is well-separated, so that the components can be treated as

points and we only need take the lowest order contributions to gravitational radiation. Tem-

porarily restricting our attention to circular binaries, how will their frequency and amplitude

evolve with time?

Let the masses be m1 and m2, and the orbital separation be R. We argued in the

previous lecture that the amplitude a distance r ≫ R from this source is h ∼ (µ/r)(M/R),

where M ≡ m1 + m2 is the total mass and µ ≡ m1m2/M is the reduced mass. We can

rewrite the amplitude using f ∼ (M/R3)1/2, to read

h ∼ µM2/3f 2/3/r

∼ M
5/3

ch f 2/3/r
(1)

where Mch is the “chirp mass”, defined by M
5/3

ch = µM2/3. The chirp mass is named that

because it is this combination of µ and M that determines how fast the binary sweeps, or

chirps, through a frequency band. When the constants are put in, the dimensionless grav-

itational wave strain amplitude (i.e., the fractional amount by which a separation changes

as a wave goes by) measured a distance r from a circular binary of masses M and m with a

binary orbital frequency fbin is (Schutz 1997)

h = 2(4π)1/3
G5/3

c4
f

2/3

GW
M

5/3

ch

1

r
, (2)

where fGW is the gravitational wave frequency. Redshifts have not been included in this

formula.

The luminosity in gravitational radiation is then

L ∼ 4πr2f 2h2

∼ M
10/3

ch f 10/3

∼ µ2M3/R5 .

(3)
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The total energy of a circular binary of radius R is Etot = −GµM/(2R), so we have

dE/dt ∼ µ2M3/R5

µM/(2R2)(dR/dt) ∼ µ2M3/R5

dR/dt ∼ µM2/R3 .

(4)

What if the binary orbit is eccentric? The formulae are then more complicated, because

one must then average properly over the orbit. This was done first to lowest order by Peters

and Matthews (1963) and Peters (1964), by calculating the energy and angular momentum

radiated at lowest (quadrupolar) order, and determining the change in orbital elements that

would occur if the binary completed a full Keplerian ellipse in its orbit. That is, they assumed

that to lowest order, they could have the binary move as if it experienced only Newtonian

gravity, and integrate the losses along that path.

Before quoting the results, we can understand one qualitative aspect of the radiation

when the orbits are elliptical. From our derivation for circular orbits, we see that the

radiation is emitted much more strongly when the separation is small, because L ∼ R−5.

Consider what this would mean for a very eccentric orbit (1− e) ≪ 1. Most of the radiation

would be emitted at pericenter, hence this would have the character of an impulsive force.

With such a force, the orbit will return to where the impulse was imparted. That means that

the pericenter distance would remain roughly constant, while the energy losses decreased the

apocenter distance. As a consequence, the eccentricity decreases. Typically, gravitational

radiation will decrease the eccentricity of an orbit, although near the ISCO there are some

other effects that enter.

The Peters formulae bear this out. If the orbit has semimajor axis a and eccentricity e,

their lowest-order rates of change are

〈
da

dt
〉 = −

64

5

G3µM2

c5a3(1 − e2)7/2

(

1 +
73

24
e2 +

37

96
e4

)

(5)

and

〈
de

dt
〉 = −

304

15
e

G3µM2

c5a4(1 − e2)5/2

(

1 +
121

304
e2

)

(6)

where the angle brackets indicate an average over an orbit. One can show that these rates

imply that the quantity

ae−12/19(1 − e2)

(

1 +
121

304
e2

)−870/2299

(7)

is constant throughout the inspiral.
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Do we have evidence that these formulae actually work? Yes! Nature has been kind

enough to provide us with the perfect test sources: binary neutron stars. Several such

systems are known, all of which have binary separations orders of magnitude greater than

the size of a neutron star, so the lowest order formulae should work. Indeed, the da/dt

predictions have been verified to better than 0.1% in a few cases. The de/dt predictions will

be much tougher to verify, though. The reason for the difference is that de/dt has to be

measured by determining the eccentricity orbit by orbit, whereas da/dt has a manifestation

in the total phase of the binary, so it accumulates quadratically with time. These systems

provide really spectacular verification of general relativity in weak gravity. In particular, in

late 2003 a double pulsar system was detected, that in addition has the shortest expected

time to merger of any known system (only about 80 million years). Having two pulsars

means that extra quantities can be measured (such as the relative motion, which gives us

the mass ratio), and in fact the system is now dramatically overconstrained (more things

measured than there are parameters in the theory). The tests of GR by observations of

binary neutron star systems deservedly resulted in the 1993 Nobel Prize in physics going to

Hulse and Taylor, who discovered the first such binary.

We are therefore quite confident that, at least in weak gravity, gravitational radiation

exists as advertised. What happens in strong gravity? That is a question that we hope will

be answered clearly via direct detections of gravitational waves. In the current, necessarily

theoretical, treatments, the process of coalescence of two black holes is usually divided into

three phases: (1) inspiral, which is typically considered to be down to an orbit or so before

the horizons overlap, (2) merger, which follows from the inspiral phase and which involves

the overlap of the horizons, and (3) ringdown, in which the now single horizon settles into

the Kerr configuration. Phases (1) and (3) can be approached analytically (although great

sophistication is needed for (1)). Phase (2) requires high-precision numerical simulations,

which first became possible in 2005. There is now excellent agreement between different

codes. If the objects are two neutron stars or a neutron star and a black hole, the numerics

become more complex; for example, if the neutron stars have low enough mass, it could be

that their merger produces a “hypermassive” neutron star, which holds off on collapse to a

black hole only because it rotates rapidly and differentially. Comparisons of the numerically

predicted waveforms in the merger and ringdown phases of BH-BH coalescence with what is

observed will provide the most direct possible tests of models of strong gravity.

Continuous sources

Let us now think briefly about continuous sources. For these, our model will be a

spinning neutron star that has a nonaxisymmetric lump or wave.

What amplitude can we expect? From the first lecture we know that if the moment of



– 5 –

inertia is I, then the amplitude is

h ∼ (G/c4)(1/r)(∂2I/∂t2) . (8)

For binaries we argued that I ∼ MR2, and also had a relation between Ω2 ∼ ∂2/∂t2 and

M and R. However, for a spinning source these relations do not have to hold. For a

gravitationally bound source (e.g., a neutron star and not a strange star, which is self-

bound and can therefore in principle rotate faster), Ω cannot be greater than the Keplerian

angular velocity, but it can certainly be less. In addition, unlike for binaries, not the entire

moment of inertia is involved in gravitational wave generation (indeed, if the spinning source

is axisymmetric, no gravitational radiation is emitted). Let us say that some fraction ǫ of

the moment of inertia is nonaxisymmetric. Generically this could be, e.g., a lump or a wave.

Therefore, h ∼ (G/c4)(1/r)Ω2ǫI.

The luminosity is then

L ∼ r2h2f 2

= (32/5)(G/c5)ǫ2I2

3
Ω6 ,

(9)

where we have put in the correct factors for rotation around the minor axis of an ellipsoid

(here I3 is the moment of inertia around that axis), and we are now defining ǫ to be the

ellipticity in the equatorial plane: ǫ = (a−b)/(ab)1/2, where the principal axes of the ellipsoid

are a ≥ b > c.

Note the extremely strong dependence on Ω. The rotational energy is Erot = 1

2
IΩ2, so

if the part of the star generating the gravitational waves (e.g., a lump) is coupled to the rest

of the star then we have
IΩΩ̇ = −(32/5)(G/c5)ǫ2I2

3
Ω6

Ω̇ = −(32/5)(G/c5)ǫ2I3Ω
5 .

(10)

For pulsars, we can relate this to the dimensionless period derivative Ṗ = −2πΩ̇/Ω2, which is

between ∼ 10−13 for young pulsars and ∼ 10−21−10−22 for the most stable of the millisecond

pulsars. Therefore, we have

Ṗ = (64π/5)(G/c5)ǫ2IΩ3 . (11)

For a typical neutron star moment of inertia I ≈ 1045 g cm2 and a young pulsar like the

Crab with Ω ≈ 200 rad s−1 and Ṗ ≈ 10−13, this implies ǫ < 3 × 10−4. The reason for

the inequality is that the observed spindown can also be caused by other effects, notably

magnetic braking. By the same argument, a millisecond pulsar with Ω ≈ 2000 rad s−1 and

Ṗ ≈ 10−21 has ǫ < 10−9.

It is not expected that gravitational waves from any isolated pulsars will be seen with

Advanced LIGO (although limits better than spindown have already been set with initial
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LIGO observations of the Crab pulsar, realistic strains are below detectable levels). There

has been some discussion about whether actively accreting neutron stars might produce

detectable gravitational waves. The argument is that these stars have a maximum frequency

(620 Hz for currently accreting stars, 716 Hz maximum for their descendents the millisecond

pulsars) that is much lower than it could have been, so maybe gravitational wave emission

limits the spin. It’s possible, but the known magnetic fields B ∼ 108−9 G in these sources are

adequate to explain the limits (consider a very strong field; it would grab onto matter a long

way from the star, where the Keplerian frequency is small, so the star would not be able to

spin up to high rates). In addition, in at least two sources the contribution of gravitational

waves is limited to at most tens of percent of the spindown by observations between accretion

outbursts. Nonetheless, it would be exciting to find continuous gravitational waves and thus

the search will go on!

Burst sources

Data analysis for these will be very challenging indeed, but since they are by definition

associated with violent events, we could potentially learn a great deal from detection of

gravitational radiation. Let’s consider a few of the more commonly discussed possibilities.

Core-collapse supernovae. When the core of a massive star collapses, it will not do

so in a perfectly symmetric fashion. For example, convection will introduce asymmetries.

What fraction of the mass-energy will therefore be released as gravitational radiation? This

is a question that has to be answered numerically, but it is an extraordinarily challenging

problem. Convection is important, so simulations have to be done in three dimensions.

Radiation transfer is also essential, as is a good treatment of neutrino transport. To make

things even worse, it seems likely that magnetic fields will play a major role, and a wide

range of scales could influence each other! Nonetheless, the current best guess is that only a

very small fraction of the total mass-energy will come out in gravitational radiation, perhaps

∼ 10−10. If so, supernovae outside our galaxy will be undetectable. However, the rate of

core-collapse supernovae in our Milky Way is estimated to be one per few decades, which

means that there is a probability of tens of percent per decade that a supernova will occur

within ∼ 10 kpc. Current calculations suggest that the strain amplitude at 10 kpc could be

h ∼ 10−20 for a few milliseconds, which would be detectable with advanced ground-based

instruments. There have also been proposals that a much higher fraction of energy is emitted

during the collapse, which brings us to the next topic.

Gamma-ray bursts (which for our current purposes are a subset of supernovae). These

are short (milliseconds to minutes), high intensity bursts of gamma rays. After a long

and interesting history (starting with their detection with US spy satellites!), it has been

established that there are two categories of GRBs, the long (tens of seconds) and the short
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(less than a second, typically). The long bursts are convincingly associated with a type of

supernova, but the detailed mechanism for their production is uncertain. Some people believe

that GRBs are the birth events for rapidly rotating black holes. If so, the rapid rotation

could be a path to much more substantial gravitational wave production. For example,

in a massive disk there are bar instabilities that could produce rotating nonaxisymmetric

structures. If these emit a lot of gravitational radiation and can be identified with particular

bursts, then we have a wonderful situation: extremely bright events at cosmological distances

whose redshift can be determined based on the electromagnetic signal, and whose luminosity

distance can be determined based on the gravitational wave signal. The difficulty is that

to be detectable at cosmological distances (at least 3 Gpc is needed to be interesting), a

truly enormous fraction of the mass-energy needs to emerge in gravitational waves (at least

tens of percent). This currently seems unlikely, but it is obviously worth pursuing from the

observational standpoint.

Stochastic background sources

These can be pictured as the overlap of many sources, which are independently unre-

solvable. For example, there could easily be 108 double white dwarf binaries in our Galaxy

that have frequencies > 10−4 Hz and would thus fall into the detection bands of proposed

space-based detectors such as eLISA.

The most interesting possibilities, however, are sources from the early universe. It is

predicted (albeit with abundant wiggle room) that the inflationary epoch of the universe will

have produced tensor modes that generate nonzero curl in the polarization from low-ℓ modes

in the cosmic microwave background. The expected levels will be such that ground-based

detectors should see them in the next few years (if Planck doesn’t see them first, which is

possible but not at all guaranteed).

If phase transitions in the early universe (e.g., from a quark-gluon plasma to baryonic

matter) are first-order, then by definition some variables are discontinuous at the transi-

tion. If the transition occurs in localized regions (“bubbles”) in space, collisions between

the bubbles could produce gravitational radiation. In addition, turbulent magnetic fields

produced by the fluid motion could generate secondary gravitational radiation, but these are

weaker. The most optimistic estimates put the contribution at h2

0
ΩGW ∼ 10−10, peaking in

the millihertz range. This would be detectable with LISA, but don’t bet on it.

A more recent suggestion has been that gravitational radiation could be produced by

cosmic strings. Cosmic strings, if they exist, are one-dimensional topological defects. As-

suming a network of cosmic strings exists, it would have strings of all sizes and therefore

contribute gravitational radiation at a wide range of frequencies. Recently, some work has
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been done on the possibility that cusps or kinks in cosmic strings could produce beams of

gravitational radiation.

If any of these scenarios comes true and in fact there is a cosmological background of

gravitational waves detected with planned instruments, this will obviously be fantastic news.

However, what if it isn’t seen? That won’t be a surprise, but there has been discussion about

missions to go after weaker backgrounds. It is often thought that the 0.1-1 Hz range is likely

to be least “polluted” by foreground vermin (i.e., the rest of the universe!). This may be,

but it is worth remembering that there are an enormous number of sources out there in

even that frequency range, and that to see orders of magnitude below them will required

extremely precise modeling of all those sources. Either way, whether we see a background or

“merely” detect a large number of other sources, gravitational wave astronomy has wonderful

prospects to enlarge our view of the cosmos.


