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Reminder: Next Homework

* The next homework 1s due the Tuesday after
Thanksgiving

* Necessary so we can squeeze 1n a last
homework at the end of class

* | strongly recommend that you start now, so
that you don’t have to think about 1t during
your break!




Dead Stars leave corpses

« White dwartfs

— remnant core of low mass star
— supported by electron degeneracy pressure

* Neutron stars

— remnant core of high mass star
— supported by neutron degeneracy pressure

 Black Holes

— remnant of some massive stars
— gravity’s ultimate victory




White Dwarfs

» White dwarfs are
the remaining cores
of dead stars.

* Electron
degeneracy pressure
supports them
against gravity.
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White dwarfs
cool off and
grow dimmer
with time.




Electron Degeneracy

* A white dwart is the spent fuel of a stellar
core. Fusion has ceased. What holds 1t up?

* Electron degeneracy

— gravity crushes atoms as close together as
possible, so that the electrons “bump” into each
other.




Electron Degeneracy

* Electron degeneracy pressure 1s really a
quantum mechanical effect stemming from
the Heisenberg Uncertainty Principle:

AxAp > h/2

* The position x of the electrons becomes
very confined, so their momentum p - and
in sum, their pressure - becomes large.




M < 1.4 Mg

Mass < 1.4 solar masses
GRAVITY

Mass > 1.4 solar masses
but mass < 3 solar masses pdass > 3 solar masses
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White Dwarf Neutron Star Black Hole
Electrons run out of room to move § Electrons + protons combine Gravity wins!
around. Electrons prevent further  § to form neutrons. Neutronsrun  MNothing prevents
collapse. Protons & neutrons still out of room to move around. collapse.
free to move around. MNeutrons prevent further

collapse. Much smaller!
Stronger gravity == more compact.
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Mass—Radius Relation for White Dwarfs

stellar
radius

( Rgym )

notice that radius decreases with
increasing mass until the Chandrasekhar
limit is reached

Chandrasekhar limit = 1.4 solar masses
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Size of a White Dwarft

1 ‘OMSun 1 ‘SMSun
Earth white dwarf white dwarf
»e
’ \ o
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e White dwarfs with the same mass as the
Sun are about the same size as Earth.

 Higher-mass white dwarfs are smaller.
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White Dwarf Density

e size R ~ thousands of kilometers
e mass M ~ mass of stars
 density absurdly high:

— white dwarf matter 1s roughly a million times
denser than water

— 1nstead of weighing a gram, an 1ce cube block
of white dwarf material would weigh a ton.
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The White Dwarf Limait

* more commonly known as the Chandrasekhar limit

Quantum mechanics says that electrons must move faster as
they are squeezed 1nto a very small space

As a white dwart’s mass approaches 1.4M¢
move at a speed approaching that of light.

This turns out to make the white dwarf unstable; it starts

contracting and keeps contracting faster and faster, almost at
free fall!

This 1s also what allows the cores of massive stars to collapse
and lead to massive star supernovae

. 1t €lectrons

Thus white dwarfs cannot be more massive than 1.4Mg, , the
white dwarf limit (also known as the Chandrasekhar limit).

13




Mass—Radius Relation for White Dwarfs

2
notice that radius decreases with
increasing mass until the Chandrasekhar
limit is reached
stellar
radius 1
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What happens 1f you add mass to a white dwart?

White dwartf 1n a close binary

Inner
Lagrangian

Orbital plane

Roche lobes:
over/under
surface
where the
gravity of
two stars
balance.




Accretion Disks

e Mass falling toward
a white dwarf from
its close binary
companion has
some angular
momentum.

 The matter
therefore orbits the
white dwarf in an
accretion disk.
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Accretion Disks

* Friction between
orbiting rings of
matter in the disk
transfers angular
momentum outward
and causes the disk
to heat up and glow.
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white dwarf

companion star

Nova

Demo

The temperature of
accreted matter
eventually becomes
hot enough for
hydrogen fusion.

Fusion begins
suddenly and
explosively on the
surface of a white
dwarf, causing a
nova. 8




Nova

Video

e The nova star
system temporarily
appears much
brighter.

e The explosion
drives accreted
matter out into
space.

Only the surface i1s
affected... "




Adding Matter to a WD

Suppose a white dwarf in a binary is just below the
Chandrasekhar limit, and more matter falls onto the
WD from the companion. What happens?

B.The WD turns into a normal star

D.The companion starts to take matter
from the WD

E.Idon’t know




Two Types of Supernova

Massive star supernova:

Iron core of massive star reaches
white dwartf limit and collapses into a
neutron star, causing explosion

White dwarf supernova:  Very important in cosmology!

Carbon fusion suddenly begins as white
dwarf 1n close binary system reaches
white dwart limit, resulting in total explosion

Simulation ...entire white dwarf is disrupted.
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One way to tell supernova types apart 1s with a light
curve showing how luminosity changes with time.




Nova or Supernova?

e Supernovae are MUCH MUCH more luminous (about 10
million times) !!!

* Nova:
— H to He fusion of a layer of accreted matter, white
dwarf left intact

e Supernova:
— complete explosion of white dwarf, nothing left behind
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Supernova Type:
Massive Star or White Dwart?

* Light curves differ

* Spectra differ (exploding white dwarfs don’t
have hydrogen absorption lines)
— White dwarf supernova spectra lack hydrogen

* no exterior “unburnt” layers

— Massive star supernova spectra have hydrogen

* most of outer star still unburnt N




Potential New NASA Mission Would Reveal the Hearts of Undead Stars

Fubishad on ASDNews: Nov 10, 2011

Source f copynght : NASA
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Neutron Stars

A neutron star
1s the ball of
neutrons left
behind by a
massive-star
supernova.

The degeneracy
pressure of
neutrons
supports a
neutron star
against gravity.
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Mass <« 1.4 solar masses

sy 1 4 < M < 3 Mg

Mass > 1.4 solar masses
butmass < 3 solar masses pg

s > 3 solar masses

GRAVITY RAVITY

LY

)

White Dwarf Neutron Star Black Hole

Electrons run out of room to move § Electrons + protons combine Gravity wins!
around. Electrons prevent further § to form neutrons. Meutronsrunj Mothing prevents
collapse. Protons & neutrons still out of room to mowve around. collapse.
free to move around. MNeutrons prevent further

collapse. Much smaller!
Stronger gravity == more compact.
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Electron degeneracy
pressure goes away
because electrons
combine with protons,
making neutrons and
neutrinos.

Neutrons collapse to the
center, forming a
neutron star.

Supported by neutron
degeneracy pressure.
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Neutron star vs. Chicago
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Mass=1.4 M, Radius=10 km

Spin rate up to 38,000 rpm
Density~10' gfcc, Magnetic field~10'? Gauss

A neutron star 1s about the same size as a small city -
roughly 10 km.
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Neutron Star Density

e size R ~ ten kilometers
e mass M ~ mass of stars
 density extra-absurdly high:

density ~ 10* gem ™3

nuclear density

— equivalent to the entire mass of the earth being
stuffed into this building, or all 7 billion people

on Earth being jammed into a teaspoon!
30
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Discovery of Neutron Stars
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Using a radio telescope in 1967, Jocelyn Bell noticed very
regular pulses of radio emission coming from a single part

of the sky.

The pulses were coming from a spinning neutron star—a

ulsar.
p Demo

http://www.jb.man.ac.uk/ pulsar/Education/Sounds/sounds.himl 31




Pulsar at center
of Crab Nebula
pulses 30 times
per second
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X-rays Visible light
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Axis of rotation

Pulsars

Manetic field lines

A pulsar 1s a
neutron star that
beams radiation
along a magnetic
axis that 1s not
aligned with the
rotation axis.
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Pulsars

The radiation beams
sweep through
space like
lighthouse beams as
the neutron star
rotates.
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