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ABSTRACT

Recent developments in numerical relativity have made it possible to reliably follow the coalescence of two
black holes from near the innermost stable circular orbit to final ringdown. This opens up a wide variety of
exciting astrophysical applications of these simulations. Chief among these is the net kick received when two
unequal mass or spinning black holes merge. The magnitude of this kick has bearing on the production and
growth of supermassive black holes during the epoch of structure formation, and on the retention of black holes
in stellar clusters. Here we report the first accurate numerical calculation of this kick, for two nonspinning black
holes in a 1.5 : 1 mass ratio, which is expected on the basis of analytic considerations to give a significant fraction
of the maximum possible recoil. We have performed multiple runs with different initial separations, orbital angular
momenta, resolutions, extraction radii, and gauges. The full range of our kick speeds is 86–116 km s , and the�1

most reliable runs give kicks between 86 and 97 km s . This is intermediate between the estimates from two�1

recent post-Newtonian analyses and suggests that at redshifts , halos with masses� will have9z � 10 10 M,

difficulty retaining coalesced black holes after major mergers.

Subject headings: black hole physics — cosmology: theory — gravitational waves — relativity

Online material: color figures

1. INTRODUCTION

When two black holes merge, the gravitational waves they
produce will carry away net linear momentum, barring con-
ditions of special symmetry (e.g., two equal-mass nonspinning
black holes receive no kick). The magnitude of the resulting
recoil is important in a variety of astrophysical contexts, in-
cluding the cosmological evolution of supermassive black holes
(Merritt et al. 2004; Boylan-Kolchin et al. 2004; Haiman 2004;
Madau & Quataert 2004; Yoo & Miralda-Escude´ 2004; Vo-
lonteri & Perna 2005; Libeskind et al. 2006; Micic et al. 2005)
and the growth and retention of intermediate-mass black holes
in dense stellar clusters (Taniguchi et al. 2000; Miller & Ham-
ilton 2002a, 2002b; Mouri & Taniguchi 2002a, 2002b; Miller
& Colbert 2004; Gu¨ltekin et al. 2004, 2006; O’Leary et al.
2006). There is thus a long history of analytical estimates of
this recoil (Peres 1962; Bekenstein 1973; Fitchett 1983; Fitchett
& Detweiler 1984; Redmount & Rees 1989; Wiseman 1992;
Favata et al. 2004; Blanchet et al. 2005; Damour & Gopakumar
2006). However, it has been shown that almost all of the recoil
occurs in the strong gravity regime, inside the innermost stable
circular orbit (ISCO). This is precisely where analytical treat-
ments are least reliable. An accurate estimate of the recoil kick
therefore requires full numerical simulations of the final phase
of the inspiral, merger, and ringdown of the coalescence of two
black holes.

Until recently, numerical simulations were not stable and
accurate enough for such estimates. This situation has changed
dramatically in the past year, with several groups developing
codes that have allowed the evolution of binary black hole
spacetimes from close to the ISCO through merger and ring-
down. Most of these codes utilize techniques that allow the
black holes, with their inherent singularities, to move success-
fully through the computational domain. One approach (Pre-
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torius 2005, 2006) is to excise the singular region in the (phys-
ically inaccessible) interior of the black hole. In contrast, our
method allows the singular region to be approximately repre-
sented in the computational domain (Baker et al. 2006a, 2006b;
Campanelli et al. 2006a, 2006b). These new techniques have
led to dramatically more effective numerical simulations of
binary black hole systems, recently allowing us to determinate
accurate waveforms for the final orbits and merger of equal
mass systems (Baker et al. 2006b), which we generalize here
for nonequal masses. While some preliminary numerical cal-
culations of recoil from mergers of nonspinning black holes
have been reported (Campanelli 2005; Herrmann et al. 2006),
the initial separations have been too small and the resolutions
too coarse for reliable and precise numbers.

Here we report the first precise fully numerical estimates of
the kick received from the merger of two nonspinning black
holes. We choose a 1.5 : 1 mass ratio because it is close to the
analytically estimated optimal mass ratio for maximum kick
(Fitchett 1983) but is also close enough to equal mass that
resolution issues are not serious impediments to the numerical
evolution. In § 2 wedescribe our numerical method and results,
including convergence tests. We discuss the astrophysical im-
plications of these results in § 3.

2. NUMERICAL SIMULATIONS

Reliable simulations of binary black hole mergers require
the specification of constraint-satisfying initial field data fol-
lowed by stable evolution of the Einstein equations. The evo-
lution variables hold information about gravitational fields in
the form of tensor fields representing the curvature of a vacuum
spacetime. Einstein’s equations, together with a crucial spec-
ification of gauge (i.e., coordinate) conditions, then govern the
evolution of these fields in time.

We utilize the “puncture” approach (Brandt & Bru¨gmann
1997) to specify constraint-satisfying initial field configurations
for black holes on an approximately circular inspiral trajectory
within a few orbits of merger. Specifically, we consider three
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Fig. 1.—Magnitude of the radiated momentum, as a function of time, from
three different simulations. For initial coordinate separations of ,d p 4.1Minit 0

, and , the final values of the kicks are 113, 97, and 92 km s�1,6.2M 7.0M0 0

respectively. Also shown is the second-order post-Newtonian radiated mo-
mentum, which was computed from a low-frequency cutoff commensurate
with that of the simulation (see text for details). The excellentd p 7.0Minit 0

agreement of the post-Newtonian kick with that of the simulationd p 7.0Minit 0

over most of the first orbit, together with the agreement to within 6% of the
final kick from the simulation with that of thed p 7.0M d p 6.2Minit 0 init 0

simulation, lends support to the accuracy of these results. [See the electronic
edition of the Journal for a color version of this figure.]

initial separations of coordinate distances ,d p 4.1Minit 0

, and , where is the total initial gravitational6.2M 7.0M M0 0 0

mass of the system, and we use units where Newton’s gravi-
tational constantG and the speed of lightc are set to unity so
that all quantities can be represented in terms of their mass-
scaling. Further, we try several slight variations in the initial
angular momentum for the largest separation. These data begin
our simulations as the system approaches the ISCO, allowing
about 1–3 orbits before the formation of a common horizon
representing the final black hole.

These data are evolved by our finite-differencing code, Hahn-
dol (Imbiriba et al. 2004), on an adaptive mesh refinement
structure implemented via PARAMESH (MacNeice et al.
2000). The punctures are allowed to move freely through the
grid and are evolved according to a variant of the Baumgarte-
Shapiro-Shibata-Nakamura formulation of Einstein’s equations
and gauge conditions as described in Baker et al. (2006b); van
Meter et al. (2006).

We interpret our numerical results by studying the gravita-
tional radiation generated by the merger that carries gauge-
invariant information away from the strong-field region. In our
simulations, radiation is represented by a component of the
space-time Weyl curvature tensor, . In terms of , the timew w4 4

rate of change of radiated momentum can be expressed as
follows (Newman & Tod 1980):

t 22dP r xi ip lim dQ dtw . (1)( )� � 4F Fdt 4p rrr� ��

We compute numerically and extract it from the simulationw4

data on a sphere of radius , which we have found isr p 50M0

sufficiently large enough to give precise results.
Our main numerical results are given in Figure 1, which

shows the net speed of the center of mass as a function of time
for several runs. To compare runs at different initial coordinate
separations we have shifted the time axis so that the kick speed
peaks at . Note that these curves are representative of at p 0
much larger body of simulation data. We have varied, for ex-
ample, the finest grid spacing from toh p M /32 h pf 0 f

for the runs, and from toM /48 d p 4.1M h p M /320 init 0 f 0

for the runs, and in either set of runsh p M /40 d p 7.0Mf 0 init 0

found the kick results of different resolutions agree to within
2%, thus confirming our numerical precision. (And we have
found that numerical error in these runs converges away at an
acceptable rate; see Baker et al. [2006a, 2006b] for previous
convergence tests of our code.) We have also varied the ex-
traction radius from to , and disallowing casesr p 30M 60M0 0

where the extraction radius significantly intersects refinement
boundaries, we have found agreement across extraction radii
to better than 2%. We have also varied the initial, orbital angular
momentum in the runs by as much as 4%, re-d p 7.0Minit 0

sulting in a 6% variation in the final kick values. Our full range
of final kick values is 86–116 km s . Excluding only the�1

case on the grounds that it starts with too littled p 4.1Minit 0

initial separation, our astrophysically relevant range of kick
values is 86–97 km s .�1

The selection of our initial momenta and centers of mass
was informed by previous work on quasi-circular initial data
based on minimization of an effective potential (Pfeiffer 2005;
Pfeiffer et al. 2000; Baker et al. 2002; Cook 1994) and further
refined by trial and error. The most astrophysically relevant
simulations were presumed to be those with the smoothest,
monotonic radiation frequencies and time derivatives thereof.

By these criteria our most reliable run gave a final kick of
92 km s .�1

Also shown in Figure 1 is a post-Newtonian result for the
kick, as integrated from a low-frequency cutoff. Because our
simulation starts from a finite orbit, the resulting radiation has
an effective low-frequency cutoff, which we have used in the
post-Newtonian calculation for consistency. We integrate, spe-
cifically, a 2PN formula for the orbital frequency (Blanchet et
al. 1995) and use the resulting frequency as a function of time
in a 2PN formula for the radiated momentum (Blanchet et al.
2005). For most of the first orbit, the agreement of the

simulation represented in Figure 1 with the post-d p 7.0Minit 0

Newtonian calculation is better than 1%.
Recently, two groups have made refined analytic estimates

of the kick from the merger of nonspinning black holes, both
with precise answers but differing in magnitude by a factor of
3. Blanchet et al. (2005) predict a speed of km s�1155� 25
for a 1.5 : 1 mass ratio, whereas Damour & Gopakumar (2006)
predict 48 km s . Our result is between these estimates but�1

inconsistent with either one. We note, however, that Blanchet
et al. (2005) integrate only until the horizons overlap, which
is close to the peak of our kick. At that point, our most reliable
run (i.e., with the widest initial separation and least apparent
eccentricity) gives a kick of≈150 km s , which is encour-�1

agingly close to the analytic estimate. This points out the im-
portance of the∼40% postpeak reduction in the kick. This
reduction can also be seen in Figure 5 of Damour & Gopakumar
(2006). We attribute it to the evolution by more thanp radians
of the phase of the emitted momentum during the merger, which
thus partially opposes the vector kick that exists at the time of
horizon overlap. It is also noteworthy that, integrating only up
to ISCO, Blanchet et al. (2005) obtain a kick of≈14 km s�1

for a mass ratio of 1.5 : 1, and in our most reliable run we also
obtain a kick of≈14 km s at ISCO.�1

An initial numerical estimate for 1.04 : 1 and 1.18 : 1 mass
ratios was made by Herrmann et al. (2006) (albeit at much
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Fig. 2.—Minimum mass of a dark matter halo at a given redshift required
to retain the product of the merger of two nonspinning black holes with a
mass ratio indicated on the curve. Details of the computation are in the text.
Note that we use the Fitchett (1983) analytical estimate of the mass ratio
dependence, assuming our numerical result of 92 km s for the mass ratio�1

of 1.5 : 1. Then a mass ratio of 3 : 1 gives 140 km s , a mass ratio of 5 : 1�1

gives 103 km s , and a mass ratio of 10 : 1 gives 45 km s . This figure�1 �1

indicates that early halos might lose merger remnants because of the kick, but
in the current universe only globular clusters or the smallest dwarf galaxies
could have black holes ejected because of gravitational radiation recoil. [See
the electronic edition of the Journal for a color version of this figure.]

lower resolution and starting much closer than our simulations),
and they find kick speeds of 9 and 33 km s , respectively.�1

One can compare results at different mass with reference to
the Fitchett (1983) fitting formula 2kick ∝ q (q � 1)/(1�

, where is the mass ratio,5 2q) p (m/m) dm/m q p m /m 1 11 2

is the symmetric mass ratio, and2m/m p m m /(m � m )1 2 1 2

is the fractional mass differ-dm/m p (m � m )/(m � m )1 2 1 2

ence. Although originally derived in the context of a leading-
order post-Newtonian approximation, this formula is suggested
to be a good approximation by perturbative Schwarzschild cal-
culations (Fitchett & Detweiler 1984), and it also closely agrees
with more recent post-Newtonian results (Blanchet et al. 2005;
Damour & Gopakumar 2006). By Fitchett’s formula, the
Herrmann et al. (2006) results would imply∼80 km s for a�1

mass ratio of 1.5 : 1, closer to our final value than the analytic
estimates.

3. DISCUSSION AND CONCLUSIONS

Our range of km s (and best estimate of�1101� 15 92�
km s ) for the kick received in a 1.5 : 1 merger of nonspinning�16

black holes has important implications for the assembly of su-
permassive black holes in the early universe (see also Merritt et
al. 2004). This is because as dark matter halos merge in the
process of hierarchical structure assembly, their central black
holes are also presumed to merge if the halo mass ratio is not
too extreme (otherwise dynamical friction on the halos is likely
to be inefficient; see Taffoni et al. 2003). If black hole masses
are linked to the mass of their host halos, it is therefore expected
that in the early universe, black hole mergers are likely to involve
comparable-mass objects. If the resulting kick exceeds the escape
speed of the merged dark matter halo, the halo is left without a
black hole. This could therefore have a significant impact on the
number of black hole mergers in the early universe. In addition,
if mergers between comparable-mass halos are common at red-
shifts , these ejections might reduce substantially the frac-z � 10
tion of halos that host black holes.

A full appraisal of the consequences of recoil will require
detailed numerical studies of the effects of black hole spin and
mass ratio, which will be our subject in future papers. We can
make initial guesses by focusing on nonspinning black holes
and by adopting as before the Fitchett (1983) formula for the
dependence of kick speed on mass ratio. Settingv (q pkick

km s fixes the curve.�11.5)p 92
To estimate the escape speed from a dark matter halo, we

follow the treatment of Merritt et al. (2004). The escape speed
from a halo of virial mass is , where2M V p 2cg(c)M /Rvir esc vir vir

as before we set . Herec is the concentration parameterG p 1
for the halo, , and we define�1g(c) p [ln (1 � c) � c/(1 � c)]

as the radius inside which the average density isR D pvir c

for a flat universe, where2 218p � 82x � 39x x { Q (z) � 1M

(see Bryan & Norman 1998, eq. [6]). The critical density for
a flat universe is g2 3 �29r p 3H /(8p)[Q (1 � z) � Q ] ≈ 10crit 0 M L

cm (e.g., Peacock 1999, § 3.2). We use�3 3(1 � z) Q p 0.27M

and . From equation (18) of Bullock et al. (2001)Q p 0.73L

the concentration parameter scales asc p 9 [M /(2 #vir

.13 �0.13 �110 M )] (1 � z),

In Figure 2 we plot the minimum halo mass as a function
of redshift such that for the listed mass ratios ofV 1 vesc kick

1.5 : 1, 3 : 1, 5 : 1, and 10 : 1, as projected from our results by
the Fitchett scaling. Note that the low power of in theMvir

escape speed means that the minimum halo mass depends sen-
sitively on the kick speed. For example, if the kick speed at a
1.5 : 1 mass ratio were 200 km s instead of 92 km s , the�1 �1

threshold halo mass at for this mass ratio would jumpz p 10
from to . This would in turn reduce the8 94 # 10 3# 10 M,

number density of halos massive enough to retain their black
holes by a factor of∼20 (see Mo & White [2002] for a ped-
agogical discussion of how to estimate halo number densities).
This points out the importance of estimating kick speeds
accurately.

As discussed by Merritt et al. (2004), kicks are also important
in the present-day universe for low-mass concentrations of
stars. Their Figure 2 is a useful summary of escape speeds
from the centers of galaxies and globular clusters. From their
figure, we see that comparable-mass mergers with kick speeds
∼100 km s will cause ejection from globulars and some dwarf�1

galaxies but that more massive galaxies will retain the remnant.
Using the Fitchett (1983) scaling with mass ratio, we find that
black holes that are�10 times more massive than their com-
panions are not ejected from globular clusters with escape
speeds of a few tens of km s . Coincidentally, this is approx-�1

imately the same mass ratio required to protect a massive black
hole from cluster ejection from three-body interactions (Gu¨l-
tekin et al. 2004, 2006). Therefore, if an intermediate-mass
black hole of1100–200 is formed in a cluster, it can stayM,

and potentially grow through future interactions. Stellar mass
binary black holes ( ) will be ejected from suchM ! 50 M,

clusters prior to merger by Newtonian three-body interactions
(Kulkarni et al. 1993; Sigurdsson & Hernquist 1993); hence,
recoil is not so important for low-mass black holes in this
context. However, mergers of black hole binaries in low-density
galactic disks could produce a population of high-speed coa-
lesced black holes.

In conclusion, we have presented a reliable and precise, fully
numerical estimate of the gravitational recoil produced by the
merger of two unequal mass nonspinning black holes. Our best
estimate of km s for a 1.5 : 1 mass ratio is inter-�192� 6
mediate between the recent analytic estimates of Blanchet et
al. (2005), who suggest km s for this mass ratio,�1155� 25
and Damour & Gopakumar (2006) whose formulae would im-
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ply 48 km s . Our results are thus an important step in ac-�1

curately evaluating the astrophysical consequences of gravi-
tational radiation recoil in dense stellar clusters and the early
universe.
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Merritt, D., Milosavljević, M., Favata, M., Hughes, S. A., & Holz, D. E. 2004,

ApJ, 607, L9
Micic, M., Abel, T., & Sigurdsson, S. 2006, MNRAS, 372, 1540
Miller, M. C., & Colbert, E. J. M. 2004, Int. J. Mod. Phys. D, 13, 1
Miller, M. C., & Hamilton, D. P. 2002a, MNRAS, 330, 232
———. 2002b, ApJ, 576, 894
Mo, H. J., & White, S. D. M. 2002, MNRAS, 336, 112
Mouri, H., & Taniguchi, Y. 2002a, ApJ, 566, L17
———. 2002b, ApJ, 580, 844
Newman, E. T., & Tod, K. P. 1980, in General Relativity and Gravitation: One

Hundred Years After the Birth of Albert Einstein, ed. A. Held (New York:
Plenum), 1

O’Leary, R. M., Rasio, F. A., Fregeau, J. M., Ivanova, N., & O’Shaughnessy,
R. 2006, ApJ, 637, 937

Peacock, J. A. 1999, Cosmological Physics (Cambridge: Cambridge Univ.
Press)

Peres, A. 1962, Phys. Rev., 128, 2471
Pfeiffer, H. P. 2005, preprint (gr-qc/0510016)
Pfeiffer, H. P., Teukolsky, S. A., & Cook, G. B. 2000, Phys. Rev. D, 62,

104018
Pretorius, F. 2005, Phys. Rev. Lett., 95, 121101
———. 2006, Classical Quantum Gravity, 23, S529
Redmount, I. H., & Rees, M. J. 1989, Comments Astrophys., 14, 165
Sigurdsson, S., & Hernquist, L. 1993, Nature, 364, 423
Taffoni, G., Mayer, L., Colpi, M., & Governato, F. 2003, ApJ, 341, 434
Taniguchi, Y., Shioya, Y., Tsuru, T. G., & Ikeuchi, S. 2000, PASJ, 52, 533
van Meter, J. R., Baker, J. G., Koppitz, M., & Choi, D.-I. 2006, Phys. Rev.

D, 73, 124011
Volonteri, M., & Perna, R. 2005, MNRAS, 358, 913
Wiseman, A. G. 1992, Phys. Rev. D, 46, 1517
Yoo, J., & Miralda-Escude´, J. 2004, ApJ, 614, L25


