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Neutron stars are expected to have a tight relation between their moment of inertia (I), tidal deformability
(λ, which is related to the Love number), and rotational mass quadrupole moment (Q) that is nearly
independent of the unknown equation of state (EOS) of cold dense matter. These and similar relations
are often called “universal”, and they have been used for various applications including analysis of
gravitational wave data. We extend these studies using piecewise polytropic representations of dense
matter, including for so-called twin stars that have a second branch of stability at high central densities. The
second-branch relations are less tight, by a factor of ∼3, than the relations found in the first stable branch.
We find that the relations on both branches become tighter when we increase the lower limit to the
maximum mass for the EOS under consideration. We also propose new empirical relations between I, λ,Q,
and the complex frequency ω ¼ ωR þ iωI of the fundamental axial w-mode, and find that they are
comparably tight to the I-Love-Q correlations.
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I. INTRODUCTION

The properties of the matter in the cores of neutron stars
are not well known because the relevant densities and
neutron-proton asymmetries cannot be explored in labo-
ratories and because observations of neutron stars are not
yet precise enough to be definitive (see [1–4]; but see [5–8]
for recent measurements from gravitational waves and
X-ray observations). Nonetheless, numerous studies using
tabulated equations of state (EOS: the pressure as a function
of the energy density) have shown that there are macro-
scopic properties of neutron stars that are tightly correlated
with each other in a way that is insensitive to the detailed
physics of the cores. For example, nearly independent of
the unknown EOS of matter beyond nuclear saturation
density, knowledge for slowly rotating neutron stars of the
moment of inertia (I), tidal Love number (Love, or λ), or
rotational mass quadrupole moment (Q) implies knowledge
of the other two to within ∼1–2% (e.g., [9–15]; note,
however, that the relations become much less tight for
rapidly rotating neutron stars [16] (although a good
correlation can be reestablished using a suitable change
of variables [17]) or stars with strong internal magnetic
fields [18]).
None of I, λ, or Q have been measured for any neutron

star. However, the so-called I-Love-Q relation has been

used to obtain improved precision in tidal deformability
constraints from the double neutron star merger events
(GW170817 [19] and GW190425 [20]) and has been used
for new tests of general relativity [21].
So far, tests of the I-Love-Q relation have largely been

confined to a limited set of tabulated EOS and most studies
have focused entirely on I, λ, and Q rather than other
potentially correlated quantities (see [22,23] for exceptions
to these rules). Moreover, a relatively unexplored region of
parameter space is that of second branches of stability, i.e.,
EOS that produce stable stars up to a certain central density,
then unstable stars up to another threshold density, then
stable stars again for a set of yet higher densities. These
have been studied under the name of “twin stars” (and are
also considered to be a third family of degeneracy-
supported objects, where white dwarfs form the first
family), and although nature might not select such EOS
they are interesting because, for example, if such stars exist
it is possible that two stars could have the same gravita-
tional mass but significantly different radii (e.g., [24–35]).
Here we: (1) parametrize the high-density EOS using

many realizations of a five-segment piecewise polytrope,
(2) explore correlations of the real and imaginary compo-
nents of the frequency of w-modes (a type of spacetime
mode; see Sec. III B) with I, λ, and Q, and (3) generate and
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analyze stars in second stable branches. We find that the
overall I-Love-Q correlation is strong, although it has
greater dispersion in the second branch. We also find that
the w-mode frequencies have correlations with I, λ, and Q
that are comparably tight to the correlations that the three
have with each other.

II. METHODS

Our goal is to compute I, λ, Q, and the w-mode
frequencies for a large number of simulated neutron stars.
The first step in the computation is to choose an EOS and a
central density. To do this we use the following procedure,
which is common in the field:
(1) We assume that we know the EOS up to half of the

nuclear saturation density, i.e., to a baryonic rest mass
density ρ ¼ ρs=2 ≈ 1.34 × 1014 g cm−3. This is jus-
tified because at such low densities laboratory experi-
ments can provide guidance (although at a much
lower neutron to proton ratio than in a neutron star).
Commonly, the EOS used at low density is SLy4 [36],
but here we use the more updated EOS QHC19 [37].
Because we assume a standard hadronic EOS at low
densities, this means that our approach cannot model
self-bound strange stars [38].

(2) Above half nuclear density, we parametrize the EOS.
There are many possible approaches (see [39–47]
for examples and applications). Here we choose a
piecewise polytropic parametrization with five den-
sity segments, following the recommendation of
[42], although we do not expect our results to be
sensitive to the choice of parametrization. The
transition densities are ρs, 2ρs, 4ρs, and 8ρs, and
in segment i the pressure P is given by PðρÞ ¼
Kiρ

Γi . The polytropic indices Γi are selected uni-
formly from 0 to 5, and the coefficients Ki are
chosen to enforce continuity of the pressure at the
transition densities. If at any density the implied
adiabatic sound speed cs ¼ ðdP=dϵÞ1=2 > c (where
c is the speed of light and ϵ is the total energy
density), then we set cs ¼ c for that density.

(3) For a given EOS, we need to choose a central density,
which serves as our boundary condition for integration
of the equations of stellar structure. For our first-
branch set of stars we choose this central density
uniformly betweenwhat would produce a 1.0 M⊙ star
and the highest density in the first stable branch (or the
single stable branch if there is only one). For our
second-branch set of stars, we choose a central density
uniformly between the lowest and highest densities of
the second stable branch. Examplemass-radius curves
for both types are shown in Fig. 1. All of our stars have
a maximum mass of at least 1 M⊙.

(4) We assume that our stars rotate slowly enough
that we can use the Tolman-Oppenheimer-Volkoff
[48,49] equation for nonrotating stars.

We have 497,220 stars in our first-branch set; this
compares with 27,440 in [23] (all of which are first-branch
stars). We also have 9484 stars in our second-branch set.
Although our methodology does not explicitly consider
changes in composition, second branches arise in EOS that
have combinations of polytropic indices that mimic phase
transitions, that is, those having Γi ≈ 0 in some density
segment i (see [50,51] for the implications of multiple
phase transitions).
The second step in the computation is the calculation of

I, λ, Q, and the w-mode frequencies. To calculate I and Q
we follow the treatment of [52] including the correction
noted in [53] (see their Eq. (26) and the associated footnote
5). To compute λ≡ 2

3
G−1R5k2 (where G is Newton’s

constant, R is the circumferential radius, and k2 is the
l ¼ 2 electric tidal Love number, or apsidal constant) we
follow [54], as amended in the erratum [55]. The relevant
equations are summarized compactly in [10]. Solution of
the equations for I andQ requires the assumption of a small
but nonzero angular velocity at the center of a uniformly
rotating star; in practice, if the assumed angular velocity is
too small, then significant numerical errors are possible.
We, therefore, use a central angular velocity of 10 Hz and
have confirmed that moderately different choices do not
lead to significantly different values for I and Q.
The w-modes are a class of odd-parity (also called axial)

nonradial perturbations that are spacetime modes of neu-
tron stars [56–58]. Because these modes decay and are,
therefore, quasinormal modes, they have a real and an
imaginary component to their frequencies: ω ¼ ωR þ iωI ,
where ωI is the inverse of the decay time (see [59,60]
for reviews on black hole and neutron star quasi-
normal modes). Early papers investigated the relation of

FIG. 1. Example mass-radius relations for the equations of
state we consider. The solid blue parts of the curves show the
first branch of stability, and the solid magenta part of one of the
curves shows the second branch of stability. The dotted
portions of the curves show regions that are unstable. The
central density of the star increases along each curve from the
bottom right to the top left.
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the w-mode complex frequency with the stellar compact-
ness GM=ðRc2Þ, where M is the gravitational mass of the
star [61–63]. Later work explored the effect of rescaling the
w-mode frequencies with the square root of the central
pressure [64] and correlations of the rescaled frequencies
with λ [23]. Here, to compute the w-mode frequencies, we
follow the numerical scheme of [23]. We find it advanta-
geous to employ a shooting technique by which we match,
at the surface of the star, an outward-integrated solution
(imposing regularity at the center of the star) with an
inward-integrated solution (imposing an outgoing wave
solution at infinity, using the exterior complex scaling
technique first proposed by [65]).

Once we have computed I, λ, Q, and the w-mode
frequencies for each of our neutron stars, we follow [10]
in fitting a fourth-order polynomial to our values:

Yi ¼ c0i þ c1iX þ c2iX2 þ c3iX3 þ c4iX4; ð1Þ

where c0i; c1i etc. are our fitting coefficients, we take log10 Q̄
as our independent variable X, and Yi is log10 Ī, log10 λ̄, or
the real or imaginary part of the w-mode frequency. Here
Q̄≡−Q=ðχ2M3Þ, Ī≡I=M3, and λ̄≡λ=M5 are, respectively,
the dimensionless rotational mass quadrupole, dimensionless
moment of inertia, and dimensionless tidal deformability,

FIG. 2. The log10 Q̄ − log10 Ī relation and its residuals. Top left: our full first-branch set of neutron stars. Top right: only the first-
branch stars constructed using EOS with maximum gravitational mass ≥ 2 M⊙. In both of the top figures, the bottom panel shows the
fractional difference from the best fourth-order fit [see Eq. (1)], as well as the overall root-mean-square (rms) deviation. Bottom left: only
the stars constructed from a second high-density stable branch. Bottom right: only the stars constructed from a second high-density
stable branch using an EOS with a maximum gravitational mass ≥ 2 M⊙. For the bottom figures, the middle panel shows the fractional
differences and rms relative to our fourth-order fit to the second-branch data, and the bottom panel shows the fractional differences and
rms relative to our fourth-order fit to the first-branch data. We see that increasing the minimum value of the maximum mass tightens the
relations for the second-branch stars, as well as for the first-branch stars. We also see that the second-branch stars follow a slightly
different relation than the first-branch stars.
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and χ ≡ J=M2 (for stellar angular momentum J) is the
dimensionless angular momentum, in units whereG¼c≡1.
In the next section we perform these fits using different
portions of our data sets and plot residuals to the fits.

III. RESULTS

A. I-Love-Q

In Figs. 2 and 3 we present the fits and residuals for
various parts of the data. Figure 2 shows log10 Q̄ versus
log10 Ī for our first-branch stars; for our first-branch stars
constructed using EOS with a maximum mass greater than
2 M⊙; for all second-branch neutron stars; and for second-
branch neutron stars constructed using EOS with a maxi-
mum mass greater than 2 M⊙. We perform the mass cuts to
gain insight into the universal relations; of course, EOS
with maximum masses below 2 M⊙ are disfavored by
the observations of high-mass neutron stars (see [66–71]).

FIG. 3. The log10 Q̄ − log10 λ̄ relation and its residuals. The panels correspond to the panels in Fig. 2. We find, in agreement with [10],
that the Q̄ − λ̄ relation is not as tight as the Q̄ − Ī relation. This statement is also true when we focus exclusively on neutron stars in the
second stable branch of central density.

TABLE I. Fitting parameters of Eq. (1) for the relations
between Q̄ and Ī, λ̄, MωR, and MωI for the first-branch stars.
In the top four rows we require Mmax > 1.0 M⊙, and in the
bottom four rows we require Mmax > 2 M⊙.

First-branch
EOS fits c0 c1 c2 c3 c4

I-Q from [14] 0.6050 0.2376 0.0132 0.0084 0.0002
I-Q 0.5995 0.3000 0.1468 0.0198 0.0242
Love-Q −0.4969 4.3256 −2.6411 1.7659 −0.3613
MωR-Q 0.4602 0.1632 −0.7951 0.5854 −0.1575
MωI-Q −0.0266 0.8640 −1.0778 0.6691 −0.1941

I-Q 0.5971 0.3158 0.1141 0.0514 0.0130
Love-Q −0.5053 4.3761 −2.7387 1.8528 −0.3901
MωR-Q 0.4605 0.1593 −0.7887 0.5839 −0.1585
MωI-Q −0.0273 0.8730 −1.1051 0.6955 −0.2017
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In the panels with second-branch neutron stars we show the
residuals to a fit to just those stars and the residuals to a fit
constructed using only the first-branch stars. We found that

the greatest outliers tended to have a polytropic index ∼5
(i.e., the maximum allowed) in the first density interval
(from a baryonic rest mass density ρ ¼ ρs=2 to ρ ¼ ρs) and
then a sharp drop of polytropic index to ∼2–3 in the next
two intervals.
Figure 3 follows the same pattern, but for log10 Q̄ versus

log10 λ̄. We find that both the Q − I and Q − λ relations
become tighter when the maximum mass cut is stricter.
This trend also applies to the second-branch neutron stars
(see [19], but also see [72]). This trend with increasing
maximum mass may be related to the observation that
greater compactness tightens the relation [9,12], but it is not
identical: our central densities are picked randomly, which
means that from an EOS with a high maximum mass we
can select a star with low mass and low compactness. We
find that the second-branch relations are slightly different
from the first-branch relations; this is evident from the
panels showing the second-branch data, where the first-
branch fits to the second-branch data have a larger rms

TABLE II. Fitting parameters of Eq. (1) for the relations
between Q̄ and Ī, λ̄, MωR, and MωI for second-branch stars.
In the top four rows we require Mmax > 1.0 M⊙, and in the
bottom four rows we require Mmax > 2 M⊙.

Second-branch
EOS fits c0 c1 c2 c3 c4

I-Q 0.5714 0.4799 −0.3404 0.4863 −0.1222
Love-Q −0.5211 4.5361 −3.4479 2.6458 −0.6572
MωR-Q 0.4244 0.4790 −1.5159 1.2196 −0.3536
MωI-Q −0.0331 0.7823 −0.6350 0.0673 0.0549

I-Q 0.6223 0.1681 0.3143 −0.0500 0.0283
Love-Q −0.4728 4.1735 −2.6090 1.9531 −0.4698
MωR-Q 0.4170 0.5965 −2.0125 1.9175 −0.6632
MωI-Q −0.0523 0.9547 −1.1088 0.5688 −0.1265

FIG. 4. The relation between the real component ωR of the frequency of the w-mode and log10 Q̄. The panels correspond to those of
Fig. 2. The correlations are tightened when we impose a lower limit on the maximum mass, and the second-branch fit to the second-
branch data is tighter than the first-branch fit to the second-branch data. However, the tightening is not as pronounced as it is for the
Q̄ − λ̄ and Q̄ − Ī relations.
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spread and a larger maximum deviation than the fits
directly to the second-branch data. Overall, and consistent
with [10], we find that the Q̄ − λ̄ relation is not quite as tight
as the Q̄ − Ī relation.
Table I gives our first-branch best-fit parameters, and

Table II does the same for our second-branch best-fit
parameters.

B. Correlations with w-mode frequencies

Previous work has demonstrated that f-mode frequen-
cies correlate well with the inverse square root of Ī [73,74].
In this section we investigate similar relations involving the
w-mode frequencies.
Note that w-modes excite very little fluid motion;

therefore, they are expected to follow universal relations,
even though earlier attempts at a universal description still
showed significant EOS-dependence. In Figs. 4 and 5, we
show the relations between Q̄ and the real (Fig. 4) and
imaginary (Fig. 5) parts of the fundamental axial w-mode

frequency, scaled with the neutron star mass to make them
dimensionless. The panels follow the same pattern as in
Fig. 2 and Fig. 3. We see that these relations are only
slightly less tight than the I-Love-Q relations and are thus
also nearly independent of the high-density EOS.
As with I-Love-Q we find that the second-branch

relations are not as tight as the first-branch relations and
that the second branch deviates somewhat from the first
branch. The clear systematics in the residuals presented in
Figs. 4 and 5 indicate that the actual functional form of the
w-mode universal relations deviates from the fourth-order
polynomial assumed here. An analytical treatment follow-
ing the series expansion presented in [76] might provide a
better description.

IV. CONCLUSIONS

Our study of a large number of parametrized high-
density EOS for neutron stars confirms the tightness of
the I-Love-Q relation and establishes that the w-mode

FIG. 5. The relation between the imaginary componentωI of the frequency of the w-mode and log10 Q̄. The panels correspond to those
of Fig. 2. The residuals show significant systematics; for example, the spread at low Q̄ is much greater than at higher Q̄. The maximum in
ωI is a common feature observed in sequences of other families of quasinormal modes, such as f-modes [75]. We find that the maximum
corresponds to M=R ≈ 0.15 for all equations of state.
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frequencies are also closely linked with I, λ, and Q. We
show that for I, λ, Q, and w second-branch stars follow a
slightly different and somewhat less tight relation than the
first-branch stars.
Currently, none of I, λ, Q, or the w-mode complex

frequency has been measured for any neutron star. Perhaps
the closest is λ, for which we have an interesting upper limit
from GW170817 [5,6,77] and a less constraining upper
limit from GW190425 [20], and which could be measured
during future, very high signal-to-noise, gravitational wave
events. It is also hoped that I could be measured from a
binary pulsar system [78], although initial optimism has
given way to understanding that there are numerous
practical difficulties with this measurement. In principle,
observations of a highly eccentric double neutron star
coalescence using a third-generation gravitational detector
could yield I and λ [79].
Because w-modes have frequencies ∼5–12 kHz depend-

ing on the EOS [59], resonant excitation during a circular
inspiral is unlikely, although there is the potential for some
nonresonant excitation especially during highly eccentric
encounters. If the modes are present, their detection likely
will require specialized instruments attuned to such high
frequencies. One proposal for the next decade is the
development of a ground-based detector with an enhanced
high-frequency sensitivity in a range between 900 Hz and
5 kHz, through the project “OzGrav High Frequency
detector” [80]. It has also been suggested that w-mode
frequencies as low as ∼2–3 kHz, along with f-mode
frequencies, could be observed from protoneutron stars
during the early stages of core-collapse supernovae [81].
Note that for both protoneutron stars and for postmerger
objects, such as hypermassive neutron stars, temperatures
as high as ∼50–100 MeV, and possibly differential

rotation, are expected. These are likely to broaden the
relations that we have obtained here, which can be
considered to be the limiting zero-temperature slow-rota-
tion case.
In summary, determination of any of I, λ, Q, or the

w-mode frequencies, let alone more than one of them, will
be challenging. Nonetheless, the robustness of the relations
means that measurements have broad implications for the
theory of strong gravity and for optimally precise infer-
ences of properties of neutron stars.
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