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ABSTRACT

Detailed modeling of the millisecond brightness oscillations during thermonuclear bursts from low-mass X-ray
binaries can provide important information about neutron star structure. Until now, the implementation of this
idea has not been entirely successful, largely because of the negligible harmonic content in burst oscillation light
curves. However, the recent discovery of nonsinusoidal burst oscillation light curves from the accreting milli-
second pulsar XTE J1814�338 has changed this situation. We therefore, for the first time, make use of this
opportunity to constrain neutron star parameters. In our detailed study of the light curves of 22 bursts, we fit the
burst oscillation light curves with fully general relativistic models that include light bending and frame dragging
for light curve calculation and numerically compute the structure of neutron stars using realistic equations of state.
We find that for our model and parameter grid values, at the 90% confidence level, Rc2=GM > 4:2 for the neutron
star in XTE J1814�338. We also find that the photons from the thermonuclear flash come out through the layers of
accreted matter under conditions consistent with Thomson scattering and show that the secondary companion is a
hydrogen-burning main-sequence star with possible bloating ( probably due to X-ray heating).

Subject headinggs: equation of state — radiative transfer — relativity — stars: neutron — X-rays: binaries —
X-rays: bursts

1. INTRODUCTION

Nearly coherent brightness oscillations have been discovered
with the Rossi X-ray Timing Explorer (RXTE ) during thermo-
nuclear X-ray bursts from more than a dozen neutron stars in
low-mass X-ray binaries (Strohmayer & Bildsten 2003). The
large modulation amplitudes at the onset of bursts, the time
evolution of the pulsed amplitude during the rise of bursts
(Strohmayer et al. 1997), the coherence of the oscillations
(Smith et al. 1997; Strohmayer &Markwardt 1999; Muno et al.
2000), and the long-term stability of the oscillation frequen-
cies (Strohmayer et al. 1998) led quickly to an interpretation
in terms of a ‘‘hot spot’’ on the surface of the star, so that the
observed flux is modulated by rotation (Strohmayer et al.
1996). This interpretation has been strongly supported by ob-
servations of the transient accretion-powered pulsars SAX
J1808�3658 (Chakrabarty et al. 2003) and XTE J1814�338
(Markwardt et al. 2003), in which the frequency of burst oscil-
lations is indeed extremely close to the spin frequency as inferred
from persistent oscillations.

Early on it was suggested that the intensity profiles of the
pulse light curves contain valuable information about the stellar
mass and radius (and hence about the equation of state of the
dense matter in the stellar core), as well as the surface emission
properties and system geometry (Strohmayer et al. 1997; Miller
& Lamb 1998;Weinberg et al. 2001). The reason is that the light
curves are affected by general relativistic light deflection as well
as special relativistic beaming and aberration, which can be
significant at the �0.1c–0.2c linear rotational speeds implied
for spin frequencies of a few hundred Hz. However, much of the
required information is encoded in the ratios of pulse ampli-
tudes at different harmonics of the spin frequency (although

some constraints can be obtained if the amplitude at the fun-
damental is particularly high; see Nath et al. 2002). Until re-
cently, no source had harmonics detected definitively (for upper
limits, see Muno et al. 2002).

This situation has now changed. Analysis of XTE J1814�
338, the fifth known accreting millisecond pulsar, shows a clear
overtone in the pulse profiles of many individual bursts, with an
amplitude that can be more than 0.25 times that of the funda-
mental (Strohmayer et al. 2003). In addition, the 314 Hz fre-
quency of the fundamental oscillation is consistent with the
spin frequency seen from the persistent pulsations. The exis-
tence of harmonics and the confirmation of the basic hot-spot
picture make this source very promising for detailed analysis and
constraints on stellar, geometrical, and emission properties. We
note that even more precise information is in principle avail-
able from the extremely accurately characterized light curves
of the persistent pulsations of millisecond pulsars, which have
several harmonics (e.g., see Cui et al. 1998; Poutanen &
Gierliński 2003). However, the spectrum and profiles of pulses
during accretion are affected by complicated details of shock
physics and Comptonization. In contrast, thermonuclear burst
spectra are well fitted by blackbodies, without any trace of a
high-energy tail related to Comptonization. They are also con-
sistent with an origin very near the stellar surface. For these
reasons, the pulses of XTE J1814�338 are most promising
for an initial investigation. Combined with analyses of surface
spectral line profiles (e.g., from EXO 0748�676; Cottam et al.
2002), thermonuclear X-ray bursts are key sources for con-
straining the state of matter inside neutron stars.

Here we report our analysis of the RXTE PCA data on 22
thermonuclear bursts from XTE J1814�338. In x 2 we briefly
describe our data extraction techniques. In x 3, we discuss our
theoretical models, the fitting procedure, and the method of
calculation of confidence intervals. We discuss our results
in x 4. In particular, we show that for the two high-density
equations of state (EOS) that we analyze, there is a preference
for comparatively less compact neutron stars. We also show
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that the emission pattern from points on the surface is con-
strained moderately strongly and is close to that expected from
the law of darkening for passive radiative transport in a Thomson
scattering atmosphere (Chandrasekhar 1960). In this paper we
use geometric units, i.e., G ¼ c � 1.

2. DATA ANALYSIS

XTE J1814�338 was discovered in the Galactic bulge moni-
toring campaign carried out with the RXTE PCA (Markwardt
& Swank 2003). The system has a binary orbital period of
4.28 hr, and the neutron star has a spin frequency of 314.36 Hz
(C. Markwardt et al. 2005, in preparation). This is the widest
binary among the five known accreting millisecond pulsar sys-
tems. A total of 27 X-ray bursts were observed during the ex-
tensive RXTE follow-up of the outburst. A summary of basic
burst properties can be found in Strohmayer et al. (2003). For
the purposes of our modeling here, we wished to produce light
curves with as high a statistical precision as possible, while still
maintaining energy-resolved profiles. To do this we elected to
phase-align different bursts (while preserving any misalignments
among the energy bands). The energy channel boundaries were
chosen so that the light curves in each band would have roughly
similar statistical qualities (i.e., similar numbers of total counts).
We used the channel boundaries 0–3, 4–6, 7–10, 11–13, and
14–28 of the ‘‘E_125us_64M_0_1s’’ PCA event mode. This
corresponds to energy boundaries of�2–3.7, 3.8–5.0, 5.2–6.6,
6.8–9.2, and 9.4–23 keV. To co-add the bursts, we found an

offset phase for each burst that maximized the Z 2
2 signal when

adding the burst in question to the initial reference burst. This is
basically the same procedure as described by Strohmayer &
Markwardt (1999).
Although the different burst profiles are qualitatively similar,

and hence adding them together is reasonable (see Fig. 1 for
the added burst profile), we found that there is a general trend
for the harmonic strength to decrease with time. That is, bursts
occurring later in the outburst seem to have somewhat smaller
ratios of the amplitude of the first overtone compared to that
of the fundamental. This suggests that some secular change
associated with the accretion rate might be influencing the de-
tails of the pulse profiles. Therefore, to allow for such changes
while still obtaining good statistics, we added together the
bursts in three groups based on their times of occurrence (see
Figs. 2, 3, and 4 for the added burst profiles for the three
groups). Since the overall structure (i.e., the mass and radius)
of the neutron star must remain fixed through the outburst, the
secular changes in the pulse profile may reflect small changes
in the spot size, location, or perhaps beaming function with
time. We will say more about this shortly.

3. PHYSICAL EFFECTS AND CALCULATIONS

The basic picture we employ is one in which after leaving
the photosphere, photons propagate freely in a vacuum to the
observer. This approach ignores any scattering during the prop-
agation. If there were scattering by a hot plasma near the star,

Fig. 1.—Fully added observational light curve (22 bursts and channels 0–28).

Fig. 2.—Observational light curve (bursts 1–8 and channels 0–28).

Fig. 3.—Observational light curve (bursts 9–16 and channels 0–28).

Fig. 4.—Observational light curve (bursts 17–22 and channels 0–28).
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we would expect this to leave its Comptonization imprint on
the spectrum as an extended power-law tail. The lack of such a
signature (Strohmayer et al. 2003) supports the assumption of
free propagation.

Even with this simplification, if the emission pattern on the
surface and the angle dependence of specific intensity from a
given point on the surface are arbitrary, then there are too many
free parameters, and no meaningful constraints are possible.
Therefore, to make progress in modeling, we adopt the fol-
lowing assumptions:

1. The surface consists of a background of uniform intensity
and spectrum, plus a single hot spot, which is a filled circle that
emits uniformly. This is the most popular simple emitting sys-
tem for burst oscillations. In a future paper we will consider
models with two hot spots.

2. For R=M < 3:52 and for Schwarzschild spacetime, an
emitted photon is deflected by more than 180

�
(Pechenick et al.

1983). Therefore, to simplify numerical techniques by ensuring
that no emitted photon is deflected by more than 180�, the
minimum value of R=M we consider is 3.6.

With these assumptions, we calculate light curves by tracing
rays backward, i.e., from the observer to the stellar surface. The
paths of these rays, and their specific intensities, carry the im-
print of several physical effects. Using an approach similar
to that of Özel & Psaltis (2003), we consider: (1) Doppler
boosts, (2) special relativistic beaming, (3) gravitational red-
shift, (4) light bending, and (5) frame dragging. We do not
include the effects of spin-induced stellar oblateness. These
effects are only second-order in the stellar rotation and are thus
small compared to other uncertainties. For example, for all our
EOS models, the polar to equatorial radii ratio of the star is
greater than 0.98 (for stellar mass M � 1:4 M� and observed
stellar spin frequency �� � 314 Hz). We describe tests of our
ray-tracing and light-curve codes in the Appendix.

To make our model light curves realistic, we calculate the
relation between M and the stellar radius R, as well as a=M
(where a is the stellar angular momentum per unit mass) for a
given M and �* (�314 Hz for XTE J1814�338), with a
specified EOS model. We do this by numerically computing
the stable structure of a rapidly spinning neutron star, using the
formalism given by Cook et al. (1994; for a detailed descrip-
tion, see also Bhattacharyya et al. 2000; Bhattacharyya 2002).
For a particular neutron star EOS model and assumed values
for the stellar mass and spin rate, we solve Einstein’s field
equations and the equation of hydrostatic equilibrium self-
consistently to obtain other stellar structure parameters (radius,
angular momentum, etc.). We use these output parameters in
our timing calculations.

In our detailed light-curve calculation, we have five input
parameters for a given EOS model and the known value of �*.
In our study, the structure of the star is fixed by one unknown
parameter, which we choose to be (1) the dimensionless stellar
radius to mass ratio (R=M ). The hot spot is specified by two
parameters: (2) the �-position �c of the center of the spot, and
(3) the angular radius �� of the spot. The emission from a
single point on the spot, as measured in the corotating frame,
is characterized by (4) a parameter n that gives a measure of
the beaming in the emitter’s frame (corotating with the star),
where the specific intensity as a function of the angle  (in the
emitter’s frame) from the surface normal is I( )/ cosn( ).
Finally, we have (5) the inclination angle i of the observer as
measured from the upper rotational pole. It is to be noted that at
the initial phase of our model calculation, we consider that the

hot spot emits as a blackbody (as burst spectra can be fitted
well by blackbodies) with a temperature kT ¼ 2 keV. However,
later we allow the source spectrum to deviate from a blackbody
(the spectrum and justification of the assumed temperature are
discussed later in this section).

In our work, we consider two representative EOS models:
A18 and A18þ �vþ UIX (Akmal et al. 1998). The first one is
the Argonne v18 model (Wiringa et al. 1995) of two-nucleon
interaction. This model fits the Nijmegen database (Stoks et al.
1993), with �2=Ndata � 1, and hence is called ‘‘modern.’’ The
model A18þ �vþ UIX considers two additional physical ef-
fects: the three-nucleon interaction (Urbana IX [UIX] model;
Pudliner et al. 1995) and the effect of relativistic boost correc-
tions to the A18 interaction. The EOS model A18 is soft, i.e.,
the maximum nonrotatingmass it supports is small (�1.67M�).
On the other hand, the EOS model A18þ �vþ UIX is hard
(maximum supported nonrotating mass is �2.2 M�). Figure 5
shows the stable stellar mass versus radius curves for these EOS
models (for stellar spin frequency �314 Hz). Although there
are many other EOS models available in the literature, our
chosen models span a representative range.

In order to compute the energy-dependent flux, we trace
back the paths of the photons from the observer to the hot spot,
using the Kerr spacetime. We solve the geodesic equations
numerically using a fifth-order Runge-Kutta method with adap-
tive step-size control. The accuracy of the results is tested
and described in the Appendix. Our ray-tracing method is sim-
ilar to that of Bhattacharyya et al. (2001), except that here
we use the Kerr spacetime, instead of the correct spacetime
around a rapidly rotating neutron star, for the sake of sim-
plicity. It is unlikely that the errors introduced by this ap-
proximation will have any detectable effect on the light curves
for the stellar spin frequency we consider (i.e., �314 Hz). Our
method has two major differences from the approach of, e.g.,
Braje et al. (2000). (1) We solve the geodesic equations of
motion of a photon from the observer to the surface of the
neutron star, instead of from the surface to the observer.
(2) Instead of doing elliptic integral reduction of the geodesics
(as was done by Braje et al. 2000), we solve the equations of

Fig. 5.—Mass vs. radius diagrams. Curve 1 is for the EOS model A18þ
�vþ UIX, and curve 2 is for the EOS model A18. These diagrams are for
stable stellar configurations, spinning with a frequency �314 Hz. The solid
parts of the curves (corresponding to higher R=M sides of the vertical lines in
Fig. 7) are the allowed regions with 90% confidence interval of R=M . These
regions constrain the mass vs. radius plane for the neutron star in XTE J1814�
338. The solid oblique line corresponds to R=M ¼ 3:6. In this work, our re-
sults are for the M–R space below this line.
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motion numerically, for easier generalization to numerical
spacetimes.

The ray tracing enables us to get the boundary of the image
of the source at the observer’s sky. We then calculate the
observed flux by integrating the observed energy-dependent
specific intensity inside the boundary of this image (for a de-
tailed description, see Bhattacharyya et al. 2001). The model
light curve is calculated by repeating the same procedure for
many spots at different �-positions (but the same �-position)
on the surface of the star. The actual phase points of the light
curve are calculated from these �-positions, the stellar spin
frequency, and the time delay consideration. The time delay
happens because photons emitted at different points on the
stellar surface take different times to reach the observer.

In this paper, we compare our models with the data of
22 bursts. Based on burst occurrence time and the harmonic
strength of the light curves, as described above, we added all
the bursts in three groups: bursts 1–8, 9–16, and 17–22. We
phase-align and stack the bursts within each group, and there-
fore effectively analyze three characteristic sets of pulse pro-
files. We used five energy bands for each group. The energy
ranges are given in x 2 above.

We compare our models directly with the data. To do this,
we compute a model light curve of intensity and spectrum
versus pulse phase. In this initial step we consider only the
light curve of the hot spot, not any background emission. We
fold the model spectrum through the RXTE response matrix to
get counts per channel as a function of rotational phase. For
each channel range, we then add a phase-independent back-
ground (which is a free parameter) and normalize it so that the
total number of counts in that channel range, summed over all
phases, is the same as the number of counts in that channel
range in the observed light curve. Our final step is to shift the
entire light curve in phase (by same amount for all the channel
bands) to maximize the match with the observed light curve, as
determined by a �2 statistic.

The procedure of adding backgrounds and normalizing
counts independently in each of the channel ranges has two im-
plications. First, the independent backgrounds mean that we
leave the unpulsed spectrum unconstrained. Second, the in-
dependent normalizations mean that although we calculate the
initial spectrum and light curve of the hot spot assuming a
kT ¼ 2 keV blackbody, renormalization allows the effective
spectrum to deviate from blackbody. Therefore, we preserve
the rms variability of a blackbody with, e.g., Doppler shifts, but
not the whole spectrum. Indeed, in reality we do not expect the
temperature to be constant throughout a hot spot; for example,
if the hot spot is related to a magnetic pole, it might be hotter
in the center than at the edges. In addition, the pulse profiles
extracted from the observations incorporate data over a period
of several tens of seconds, during which the hot spot is likely
to cool significantly. Thus, the time-averaged spectrum will not

truly be a blackbody, and hence we let the spectrum be adjusted
by allowing independent normalizations.
The initially chosen hot-spot temperature of 2 keV is justified

for the following reasons: (1) it is expected to be close to the
average blackbody temperature of the hot spot for most of the
bursts (see Kuulkers et al. [2003] for blackbody temperature
variation during burst evolution for several sources), and (2) the
likelihood distributions (see next two paragraphs for descrip-
tion) for the parameters are similar, even for widely different
initially chosen hot-spot temperatures.
Using the above procedure of adding backgrounds, normal-

izing, and shifting phases, we find the best �2 value for many
different combinations of parameters. To be systematic, we
consider combinations of parameters on a grid (for the values of
each parameter, see Table 1). We also use the Markov Chain
Monte Carlo (MCMC) method to ensure that the grid method
does not miss any significantly low �2 values. The number of
counts per phase bin in each channel range is large enough that
Gaussian statistics apply, hence the likelihood is proportional
to exp ½��2=2	. We apply the physical constraint that the value
of each parameter is same for all the channel ranges for a given
burst group (some parameters, for example, the size and lo-
cation of the hot spot, may change from one burst group to
another). Therefore, for each parameter combination, the like-
lihood is proportional to exp ½���2=2	, where the sum is over
all the channel ranges.
Once the likelihoods are computed for each combination of

parameters, we produce likelihoods for each parameter indi-
vidually via the process of marginalization. In this process, let
the posterior probability density over the full set of model
parameters �1 : : : �n be p(�1 : : : �n). If we are interested in the
credible region for a single parameter �k , then we integrate, or
marginalize, this probability distribution over the ‘‘nuisance’’
parameters �1 : : : �k�1 and �kþ1 : : : �n:

q(�k) ¼
Z

d�1 : : : d�k�1d�kþ1 : : : d�n p(�1 : : : �n): ð1Þ

For our purposes we assume that each combination of pa-
rameters has the same a priori probability, hence the poste-
rior probability is simply proportional to the likelihood. For
Gaussian distribution of likelihoods of a parameter, this method
is equivalent to the standard frequentist procedure. However,
for non-Gaussian distribution, this Bayesian method is more
general.
We find that the posterior probability distributions are not

Gaussian for most of our parameters. Therefore, although
there is a unique maximum likelihood value for any parameter,
credible regions cannot be quoted uniquely. For example,
one gets a different value if one assumes a symmetric distri-
bution than if one looks for the smallest region containing a
certain total probability. We have adopted a variant of the latter

TABLE 1

Grid Values Considered for the Parameters for Likelihood Calculations

Parameter Grid values

R=M ....................................... 3.60, 3.70, 3.80, 3.90, 4.00, 4.10, 4.15, 4.20, 4.25, 4.30, 4.35, 4.40, 4.45, 4.50, 4.55, 4.60, 4.65,

4.70, 4.75, 4.80, 4.85, 4.90, 5.00, 5.10, 5.20, 5.30, 5.40, 5.50, 5.60, 5.70, 5.80, 5.90, 6.00

i (deg)..................................... 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50

�c (deg)................................... 10, 30, 50, 70, 90, 110, 130, 150, 170

�� (deg)................................. 5, 25, 45, 60

n.............................................. 0.00, 0.20, 0.40, 0.45, 0.50, 0.55, 0.60, 0.65, 0.70, 0.75, 0.80, 0.90, 1.00, 1.10, 1.50
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procedure. Using linear interpolations of the probability be-
tween grid points for a given parameter, we compute the
smallest region that includes the maximum likelihood point
and contains 90% of the total probability. For parameters ex-
pected to remain unchanged between bursts (specifically, R=M
and the observer inclination i, and also the beaming parameter
n), we combine data from all bursts. For the other parameters,
we calculate likelihoods separately for each of the three burst
groups.

4. RESULTS AND CONCLUSIONS

As discussed in x 3, we perform comparisons using two EOS
models. Figure 6 shows the goodness of fit for a certain burst
group and channel range and for a representative combination
of parameter values. The �2 value for this example comes out to
be �25.5, for the number of degrees of freedom (dof ) equal to
24. This goodness of fit suggests that the overall model frame-
work is a reasonable representation of the data.

In Figure 7, we plot the likelihoods with the parameter R=M
for two EOS models, using the data from all 22 bursts. While
we can not determine an upper limit of R=M , lower limits (4.7
for A18þ �vþ UIX and 4.2 for A18) of 90% confidence re-
gions (given in Table 2) can be computed. We do not consider
R=M values greater than 6.0, as for these values the stellar
mass is too small (<1.07M� for A18 and<1.29M� for A18þ
�vþ UIX) to be realistic for an accreting neutron star. A sim-
ple extrapolation of the likelihood curves in Figure 7 shows
that the probability of R=M < 3:6 is very small. However, for
R=M < 3:52 and for Schwarzschild spacetime, photons from a
single point on the stellar surface may reach the observer by
multiple paths. As a result, the corresponding light curves may
be qualitatively different from the ones we calculate. There-
fore, we can say that one interpretation of the data is that R=M
is greater than 4.2 with 90% confidence, but we can not com-
pletely exclude the possibility of R=M < 3:52.

Figure 8 displays the likelihood distribution with the ob-
server’s inclination angle i. This figure shows that i > 22

�
with

very high probability. Here, as well as for the likelihood cal-
culation of other parameters, we focus our fitting procedure on
the range 20�–50� for i. This is because, with a smaller number
of grid points for other parameters, our fitting for inclination
angle values in the range 5�–90� shows that the likelihood

TABLE 2

90% Confidence Intervals for R=M , i, and n

Parameter Lower Limit Upper Limit

A18þ �vþ UIX

R=M ....................................... 4.7 6.0

i (deg)..................................... 26 48

n.............................................. 0.55 1.30

A18

R=M ....................................... 4.2 6.0

i (deg)..................................... 36 50

n.............................................. 0.55 1.17

Fig. 6.—Example fit to the data. Stacked data (solid curve) for bursts 9–16
(channel range 7–10) from XTE J1814�338 vs. a model (dotted curve) in
which R=M ¼ 4:9, i ¼ 36�, �c ¼ 110�, the hot spot has an angular radius of
45�, and n ¼ 0:8 (see text for description of parameters). Here we have used
the EOS model A18 þ �vþ UIX. In this fitting we get a �2 value �25.5, for
24 degrees of freedom.

Fig. 7.—Likelihood distribution of stellar radius to mass ratio R=M , using
data from all 22 bursts. The solid curve is for the EOS model A18þ �vþ UIX,
and the dashed curve is for the EOS model A18. The solid vertical line gives
the lower limit of the 90% confidence region for the EOS model A18þ
�vþ UIX, and the dashed vertical line gives that for A18.

Fig. 8.—Likelihood distribution of observer’s inclination angle i, using data
from all 22 bursts. The solid curve is for the EOS model A18þ �vþ UIX, and
the dashed curve is for the EOS model A18. The solid vertical lines give the
90% confidence interval for the EOS model A18þ �vþ UIX, while the
dashed vertical line gives the lower limit of the 90% confidence region for
A18. This figure demonstrates that a value of i < 22� is highly improbable.
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values for i < 20
�
are very small, and the inclusion of incli-

nation angles greater than 50
�
produces only minor changes to

our results. However, constraints on inclination angle by ob-
servations in other wavelengths would help us constrain other
parameters more effectively. At present, M. Krauss et al. (2005,
in preparation) are working on this using optical data.

We keep the beaming parameter n (defined in x 3) fixed in all
three burst groups in our statistical procedure. This is because
the thermonuclear flash is expected to occur at the bottom
of a pile of accreted matter. Therefore, although the original
emissionmay be isotropic, what comes out through the layers of
accreted matter should be beamed. As the optical depth of these

layers is expected to be very high, we expect the law of dark-
ening (and hence the value of n) to be the same for all the bursts.
The likelihood distributions for n for the two EOS models

are shown in Figure 9. For both EOS models, the beaming
parameter n peaks at n ¼ 0:75. This figure shows that n is well
constrained on the lower side, and the lower limit of the 90%
confidence regions (for both the EOS model) is 0.55 (given in
Table 2). The law of darkening for semi-infinite plane parallel
layers with a constant net flux and Thomson scattering is given
in Chandrasekhar (1960). In Figure 10, we compare this law
of darkening I( ) with our emission function cosn( ). We
find that, for n ¼ 0:55 (where likelihood value is �15%–20%
of the peak likelihood value), our emission function matches
with I( ) quite well, except for nearly tangential emission (for
which the emitted flux is small). The matching is also rea-
sonably good for the most probable value n ¼ 0:75. Therefore,
the data are consistent with Thomson scattering through an op-
tically thick layer (probably in the accumulated accreted mat-
ter) of thermal electrons.
In Table 3, we show the 90% confidence intervals for the

polar angle of the center of the hot spot (�c) for both the EOS

TABLE 3

90% Confidence Intervals for the Polar Angle (�c)
of the Center of the Spot

Burst Group

Lower Limita

(deg)

Upper Limita

(deg)

A18þ �vþ UIX

1–8 .................................................... 69 131

9–16 .................................................. 82 138

17–22 ................................................ 82 139

A18

1–8 .................................................... 60 118

9–16 .................................................. 74 129

17–22 ................................................ 69 129

a We calculate the 90% confidence interval for each burst group separately
because this parameter could, in principle, vary between bursts.Fig. 9.—Likelihood distribution of the beaming parameter n (defined in

x 3), using data from all 22 bursts. The solid curve is for the EOS model
A18 þ �vþ UIX, and the dashed curve is for the EOS model A18. The solid
vertical lines give the 90% confidence interval for the EOS model A18þ
�vþ UIX, while the dashed vertical lines give that for A18. This figure dem-
onstrates that a value of n < 0:2 is highly improbable.

Fig. 10.—Comparison between I( ) ( law of darkening; Chandrasekhar
1960) and our emission function (cosn ): both the functions give the angular
distribution of specific intensity in the emitter’s frame (corotating with the
star). Here the independent parameter is the emission angle ( , measured from
surface normal) in the emitter’s frame, and the dependent parameter is the ratio
of A cosn( ) to I( ) (where A is an arbitrary constant, and I( ) is the law of
darkening for the radiative transfer in a semi-infinite plane-parallel atmosphere
with a constant net flux and Thomson scattering). The solid curve is for n ¼
0:55, and the dashed curve is for n ¼ 0:75. For the solid curve, I( ) is well
fitted by our emission function, except for very high emission angles, for
which the emitted flux is small.

Fig. 11.—Likelihood distribution of the polar angle of the center of the spot
(�c) for bursts 1–8. The solid curve is for the EOS model A18 þ �vþ UIX,
and the dashed curve is for the EOS model A18. The solid vertical lines give
the 90% confidence interval for the EOS model A18þ �vþ UIX, while the
dashed vertical lines give that for A18. This figure demonstrates that a value of
�c < 50� or >150� is highly improbable for bursts 1–8.
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models. Here we give the results for the three burst groups
separately, as the values of this parameter may change from
one group to another. The union of 90% confidence intervals
for all burst groups and EOS models is 60�–139�. Assuming
that the hot spot is at the magnetic pole, this implies an angle of
40�–90� between the spin axis and the magnetic axis. The peak
of the likelihood distribution for �c always occurs around the
interval 90

�
–110

�
(see Figs. 11, 12, and 13); hence, the mag-

netic pole may be close to the rotational equator.
Table 4 displays the likelihood values for the angular ra-

dius (��) of the hot spot for different burst groups and EOS
models. For the burst group 1–8, �� is comparatively better
constrained, and a smaller spot (�� � 5�–25�) is likely. For the
other two burst groups, comparatively larger spots are proba-
ble. A direct comparison of the likelihoods of two EOS mod-
els shows that the difference is not enough to constrain EOS
models by this direct method.

The pulsar mass function and orbital period for this source
are 0.002016 M� and 4.27 hr, respectively (Markwardt et al.
2003). Hence, a reasonable range of neutron star mass (1.4M�–
2.0 M�) and our i > 20

�
inclination angle constraint imply a

companion mass of 0.17 M�–0.72 M�. For this range of
masses and for the observed orbital period, the companion can
be neither a helium main-sequence star nor a degenerate star
(Bhattacharya & van den Heuvel 1991). It is also too large to
be a brown dwarf (as was predicted for another accreting
millisecond pulsar system, SAX J1808.4�3658; Bildsten &
Chakrabarty 2001). The most probable option is that it is ei-
ther a hydrogen-burning main-sequence star or an evolved
(sub)giant star. However, the companion mass is too small for it
to have evolved off the main sequence (Böhm-Vitense 1992).
Therefore, the most likely option is a hydrogen main-sequence
star. This is also seen in Figure 14. If the companion is a nor-
mal hydrogen-burning main-sequence star (as shown in Fig. 14),
its maximum possible mass is �0.48 M�. This is because the
radius of the companion can not be smaller than that of a

TABLE 4

Likelihood Distribution of the Angular Radius of the Spot ��

Likelihood

Burst Group
a

��

(deg) A18þ �vþ UIX A18

1–8 .......................................... 5 1.000 1.000

25 0.566 0.426

45 0.503 0.082

60 0.047 0.002

9–16 ........................................ 5 0.718 0.826

25 0.458 0.712

45 1.000 1.000

60 0.379 0.153

17–22 ...................................... 5 0.367 0.569

25 0.439 0.649

45 1.000 1.000

60 0.354 0.110

a We calculate the likelihood distribution for each burst group separately
because this parameter could, in principle, vary between bursts.

Fig. 12.—Likelihood distribution of the polar angle of the center of the spot
(�c) for bursts 9–16, as shown in Fig. 11. This figure demonstrates that a value
of �c < 50

�
is highly improbable for bursts 9–16.

Fig. 13.—Likelihood distribution of the polar angle of the center of the spot
(�c) for bursts 17–22, as shown in Fig. 11. This figure demonstrates that a
value of �c < 50� is highly improbable for bursts 17–22.

Fig. 14.—Companion mass vs. radius plane (similar to Fig. 4 of Markwardt
et al. 2002): the lines under the phrase ‘‘XTE J1814�338’’ are for the com-
panion star in the source XTE J1814�338 (for an observer inclination angle
>20�), the dashed line is for a neutron star of mass 1.4 M�, and the dotted
line is for a neutron star of mass 2.0 M�. For the purpose of comparison, we
plot the mass–radius curves for a hydrogen-burning main-sequence star (solid
line; using R=R� ¼ M=M�), a helium main-sequence star (dash-dotted line;
Verbunt 1990), brown dwarfs (dashed lines), and a cold helium dwarf (dotted
line). Brown dwarf models are for ages of 0.1, 0.5, 1, 5, and 10 billion yr ( from
top to bottom). This figure demonstrates that the companion star in the source
XTE J1814�338 is likely to be a hydrogen-burning main-sequence star.
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hydrogen main-sequence star (for a given mass), but it can be
larger because it can be bloated from X-ray heating by the
neutron star and/or the accretion disk. This upper limit of the
companion mass corresponds to a lower limit of the observer’s
inclination angle of 24

�
(using the pulsar mass function value

and a lower limit of neutron star mass 1.4 M�). Interestingly,
this lower limit of inclination angle is close to that found by our
light curve fitting. However, if the mass fraction of hydro-
gen in the hydrogen-burning main-sequence companion star is
very low, then it may have a higher mass than 0.48 M� (see
Rappaport& Joss 1984). If we consider the lower limit (0.17M�)
of the companion mass, then its radius is about 98% larger than
the normal radius (Bhattacharya & van den Heuvel 1991).

In conclusion, the significant overtones observed in the pulse
profiles of burst brightness oscillations from XTE J1814�338
open up new possibilities for constraints on neutron star struc-
ture as well as on source geometry and emission properties. In a

subsequent paper, we will study the analysis possible with fu-
ture large-area detectors, in particular whether EOS models
may be strongly constrained based on their likelihoods.
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APPENDIX

We use three codes in series to calculate the �2 values. These codes have been checked in different ways. Here we mention a few of
them. The ray-tracing code traces back the paths of photons from the observer to the surface of the star and calculates different
parameter values at the footprints of the photons on the surface. For a photon that is emitted from the surface tangentially (i.e., the one
with maximum angular momentum), one can calculate the amount of angular deflection at infinity (for the Schwarzschild spacetime).
The comparison between these values with the outputs from our code give satisfactory results. For example, when R=M ¼ 4:2, the
total angle traveled by a photon emitted tangentially at the surface is 145N8, and our code yields 145N1. The code also calculates the
total redshift with typically less than 0.01% error. However, a photon travelling directly over a pole of the star gives a few degrees of
error in the �-position of its emission point. But the error in this single ray does not introduce significant error in our final results.

For both the Schwarzschild and Kerr metrics, the value of L ¼ �p�=pt can be derived analytically at the observer’s position and at
the surface of the star. Here p� and �pt are the photon’s � angular momentum and energy, respectively. At the observer’s position,

L ¼ �b sin i sin �; ðA1Þ

where b and � are plane polar coordinates in observer’s sky, and i is the observer’s inclination angle. At the surface of the star,

L ¼
g
1=2
�� cos �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g2�t=4g�� � gtt

q
� g�t=2g

1=2
��

� �
cos �

; ðA2Þ

where � is the emission angle with �-direction, and g�� are the metric coefficients of a metric,

dS2 ¼ gttdt
2 þ grrdr

2 þ g��d�
2 þ g��d�

2 þ g�td�dt: ðA3Þ

As L remains constant along the photon’s path, the values of L from equations (A1) and (A2) should be the same. We find that with
our ray-tracing code the maximum difference in these two values is �1%.

The light curve calculation code computes the energy-dependent observed flux from different hot spots on the stellar surface. This
is done by the integration of observed specific intensity over the image of the hot spot at the observer’s sky. As the image of the hot
spot is of irregular shape, this integration is done using a Monte Carlo method. We ensure that different random seed values and
different numbers of points (used for Monte Carlo integration) give a stable result. For example, for parameter combinations giving
�2=dof � 1, differences in �2 are less than 0.5%. For larger �2 values, these differences are more, but still very low, and these have
little effect because it is the lower �2 values that dominate the likelihoods. These differences in �2 appear to be more or less random,
hence the differences in total �2 (addition for different channel ranges and burst groups) are also small. The integrated area is also
verified to be correct (with typically less than 0.1% error) even for a small spot (for example, with 5� angular radius) with its center at
the same � and � values as the observer.

Finally, the comparison code compares the theoretical light curves with the observed data and computes the �2 values. We check
this code in different ways. For example, we consider different maximum background values and different steps in background
values to ensure a stable result (maximum �0.03% difference in �2 values). We also use synthetic data to confirm that the known
parameters are obtained to accuracies compatible with our uncertainty region for the real data.
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