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As current and future experiments probe strong gravitational regimes around neutron stars and black
holes, it is desirable to have theoretically sound alternatives to general relativity against which to test
observations. Here we study the consequences of one such generalization, Einstein-aether theory, for the
properties of nonrotating neutron stars. This theory has a parameter range that satisfies all current weak-
field tests. We find that within this range it leads to lower maximum neutron star masses, as well as larger
surface redshifts at a particular mass, for a given nuclear equation of state. For nonrotating black holes and
neutron stars, the innermost stable circular orbit is only slightly modified in this theory.
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I. INTRODUCTION

General relativity (GR) has passed every test so far, from
solar system dynamics and light bending to precision
measurements of the orbits of binary pulsars [1].
Nonetheless, tests in strong gravity remain elusive, largely
because phenomena in strong gravity involve other uncer-
tain physics as well. For example, spectral profiles of Fe
K� fluorescence lines in active galactic nuclei and stellar-
mass black holes [2–6] are consistent with the expecta-
tions of gas streamlines near rapidly rotating black holes.
However, precision tests are not yet possible because of
unknowns about the emission profile and other
complications.

More robust tests are on the horizon. Larger-area x-ray
detectors such as Constellation-X [7] may be able to track
the motion of individual emitting elements in a disk, hence
mapping out the spacetime near a rotating black hole. Even
more robustness is likely to come from detections of
gravitational waves from double black hole mergers of
various masses and mass ratios seen with ground-based
interferometers such as LIGO [8], VIRGO [9], GEO-600
[10], and TAMA [11] and later with space-based instru-
ments such as LISA [12]. A third source of strong field
tests could exploit neutron star masses and surface red-
shifts. It is that sort of system that is the subject of this
paper.

It is therefore desirable for current and future data to
have theoretically sound—and preferably well-
motivated—alternatives to our generalizations of GR.
The simplest alternatives that have been considered are
various scalar-tensor theories. In the case of the well-
known Jordan-Brans-Dicke theory it has been shown [13]
that the predictions of the theory in both the weak and
strong field regimes deviate from GR by a parameter that is
tightly constrained by post-Newtonian solar system experi-

ments. Thus, the properties of compact objects such as
neutron stars in Jordan-Brans-Dicke theories that pass
these weak-field tests must be very close to those found
in GR. However, Damour and Esposito-Farese [14] found a
wide class of other scalar-tensor theories exhibiting ‘‘spon-
taneous scalarization,’’ where weak-field constraints are
met, but compact objects have significant deviations from
GR in the strong field regime. Recently, [15] studied the
properties of nonrotating neutron stars in these theories,
finding larger stellar masses than in GR and larger surface
redshifts for a given equation of state. These results were
then used to put an observational constraint on one of the
parameters of the model.

Over the past several years, a number of further alter-
natives to GR have been proposed in the context of incor-
porating Lorentz violation (LV) into gravity; see, for
example, Refs. [16–23] and references therein. These
theories can be thought of as low energy effective field
theory descriptions of local LV possibly arising from quan-
tum gravitational physics at energies near the Planck scale.
In this paper we study one of these models, ‘‘Einstein-
aether’’ theory (or ‘‘ae-theory’’ for short) [24], in which a
dynamical unit timelike vector field ua is coupled to grav-
ity. The LV here is a sort of spontaneous symmetry break-
ing. The action is Lorentz invariant, but in any solution ua

defines the 4-velocity of a local ‘‘preferred’’ frame at each
spacetime point, which breaks local boost symmetry.

The general ae-theory dynamics is dependent on four
dimensionless coupling parameters. Weak-field constraints
on ae-theory can all be met by restricting these parameters
to a subset of the four dimensional parameter space that is
very narrow compared to unity in all but one dimension.
The nature of these constraints is summarized in the fol-
lowing section. They are derived in the weak-field regime,
except for strongly self-gravitating neutron star binaries. It
is therefore interesting to ask what are the deviations from
general relativity in the strong field regime, and to compare
that behavior with observations of astrophysical systems.

The main objective of this paper is to study the proper-
ties of nonrotating neutron stars in ae-theory. The stellar
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solutions depend on only one combination of the theory’s
coupling parameters. We consider six candidate equations
of state, three with purely nucleonic degrees of freedom
and different hardness, and three involving quark matter
with different bag constants. By numerical solution of the
field equations interior to the star we obtain the maximum
mass, relation between mass and radius, and surface red-
shifts, all as a function of the coupling parameter.

It turns out that the maximum neutron star mass is less
than in the case of GR, and is smaller for larger values of
the coupling parameter. Thus, once the equation of state
becomes known well enough, it will be possible to place an
upper bound on the coupling parameter by observations of
neutron star masses. Nonstandard relations between mass
and surface redshift also occur, providing another possi-
bility for interesting phenomenology and constraining the
coupling parameter.

We also examine the location of the innermost stable
circular orbit (ISCO) as a function of mass, to determine
whether that might provide further useful observables dis-
tinguishing GR and ae-theory. We find however that the
ISCO is nearly unchanged for reasonable coupling parame-
ters and nonspinning objects.

The structure of this paper is as follows. In Sec. II we
first review the basics of Einstein-aether theory and sum-
marize the current constraints on theory. In Sec. III the
equations of structure for fluid stars in ae-theory are pre-
sented, together with the form of the analytic exterior
solution to which the interior must be matched. Using the
exterior solution, expressions are obtained for the surface
redshift and ISCO radius that can be employed with the
numerical solutions to obtain the observable quantities. We
present the numerical results in Sec. IV, together with the
constraints on the coupling parameter that can be obtained
with these results. In Sec. V we conclude with a brief
discussion of prospects for further constraints from more
precise neutron star measurements and rotating black hole
solutions.

II. EINSTEIN-AETHER THEORY

The action for Einstein-aether theory is the most general
generally covariant functional of the spacetime metric gab
and aether field ua involving no more than two derivatives
(not including total derivatives),

 S �
1

16�G

Z �������
�g
p

�L� � Lmatter�d
4x; (1)

where

 Lae � �R� Kabmnraumrbun � ��gabuaub � 1� (2)

and Lmatter denoted the matter Lagrangian. Here R is the
Ricci scalar, Kab

mn is defined as

 Kab
mn � c1gabgmn � c2�am�bn � c3�an�bm � c4uaubgmn;

(3)

where the ci are dimensionless coupling constants, and � is
a Lagrange multiplier enforcing the unit timelike con-
straint on the aether. The convention used here for metric
signature is (����) and the units are chosen so that the
speed of light defined by the metric gab is unity. Note that
since the covariant derivative operator ra involves deriva-
tives of the metric through the connection components, and
since the unit vector is nowhere vanishing, the terms
quadratic in ru also modify the kinetic terms for the
metric.

The matter Lagrangian Lmatter generically will be a func-
tional of a collection of matter fields (denoted as  ) along
with gab and ua. However, following the observational
constraints on Lorentz violation in the matter sector, we
assume here when studying the neutron star solutions that
there is no significant coupling of matter to ua. The ab-
sence of coupling of ua to matter has no theoretical justi-
fication in this purely phenomenological approach, and
may be regarded as unnatural. However our goal here is
just to explore consequences of gravitational Lorentz vio-
lation in a phenomenologically viable setting. It remains an
open question whether this can emerge as an approxima-
tion to a more fundamental underlying theory.

The field equations from varying (1) with respect to gab,
ua, and � are given by

 Gab � T�u�ab � 8�GTMab; (4)

 raJam � c4 _uarmua � �um; (5)

 gabuaub � 1; (6)

where

 Jam � Kab
mnrbun: (7)

The aether stress tensor is given by
 

T�u�ab � rm�J
m
�aub� � J�a

mub� � J�ab�u
m�

� c1��raum��rbu
m� � �rmua��r

mub��

� c4 _ua _ub � �un�rmJ
mn� � c4 _u2�uaub

� 1
2Lugab; (8)

where Lu � �Kab
mnraumrbun. The Lagrange multiplier

� has been eliminated from (8) by solving for it via the
contraction of the aether field equation (5) with ua.

Observational constraints on the parameters ci
In the weak-field, slow-motion limit ae-theory reduces

to Newtonian gravity [25], with a value of Newton’s con-
stant GN related to the parameter G in the action (1) by

 GN �
G

1� �c1 � c4�=2
: (9)

The phenomenology of Einstein-aether theory has been
extensively studied over the last few years. Theoretical
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and observational constraints on the coupling parameters
ci have been determined from parametrized post-
Newtonian analysis [26–28], stability and linearized en-
ergy positivity [29–32], primordial nucleosynthesis [25],
and vacuum Cerenkov radiation [31]. The combined con-
straints from all of these are reviewed in Ref. [28].

To summarize here, all parameterized post-Newtonian
(PPN) parameters except the preferred frame parameters
�1;2 agree with those of GR for any choice of the ci.
Observations impose strong constraints on �1 ( & 10�4)
and �2 ( & 4� 10�7). These parameters can be set to zero
in Einstein-aether theory by imposing two conditions, on
the ci, which can be solved to determine

 c2 � ��2c2
1 � c1c3 � c

2
3�=3c1; c4 � �c

2
3=c1: (10)

With this choice the gravitational constant appearing in the
cosmological Friedmann equations agrees with that ap-
pearing in the force law between isolated masses, so there
is no further nucleosynthesis constraint. The stability, posi-
tive energy, and vacuum Čerenkov constraints then impose
the inequalities

 0< c� < 1; 0< c� < c�=3�1� c��; (11)

where c	 � c1 	 c3.
Further constraints have been obtained using radiation

damping in binary pulsar systems [33]. An analysis ne-
glecting strong self-gravitating effects found that when
(10) hold, just one condition A�c1; c3� � 1 makes the
lowest order radiation rate in ae-theory identical to that
of GR. This condition is satisfied entirely in the region
allowed by (11).1 However, the neutron star sources are
strongly self-gravitating. It turns out [34] that as long as
ci & 0:1, the strong field corrections are negligible, but for
larger coupling values the precise radiation damping con-
straints are not yet worked out. They will lead to a modified
condition A0�c1; c3� � 1 that will depend on the nature of
the compact objects in the binary.

Neutron star structure constraints along the lines dis-
cussed in the present paper should eventually be able to
restrict c14 � c1 � c4, which is given by

 c14 � 2c�c�=�c� � c�� (12)

when the PPN equivalence conditions (10) hold. The only
previous constraint on c14 was the requirement that it be
less than 2 in order to maintain positivity of Newton’s
constant (9).

Figure 1 shows the region in the �c�; c�� parameter
space allowed by the above constraints (other than the
radiation damping constraint), along with c14 contours.
Note that without a constraint on c14, c� can grow arbi-
trarily large as c� ! 1. Any upper bound on c14 will cut

off this region however. A c14 contour intersects the right-
hand boundary (c� � 1) of the allowed region at c� �
c14=�2� c14�, and intersects the upper boundary at c� �
�4=3�c14=�2� c14�.

III. NEUTRON STARS

Time independent spherically symmetric solutions in ae-
theory were extensively studied recently in a pair of papers
on fluid star [35] and black hole [36] configurations. For
black holes, the aether vector has a radial component, but
for the case of a star it does not, i.e. it is aligned with the
static frame defined by the Killing vector, both inside and
outside the star. Thus, unlike in GR, the exterior solution
for a star is not the same as for a black hole.

In Ref. [35] the static vacuum exterior solution was
found analytically, and numerical integration was em-
ployed to find interior stellar solutions for the test case of
a constant mass density equation of state. The mass was
found by matching the interior to the exterior solutions.
Unlike constant density stars in general relativity (GR), the
mass does not increase monotonically with central pres-
sure; rather, there is a maximum mass at a finite central
pressure beyond which the stars are unstable. This maxi-
mum mass is smaller than in the GR case.

It is adequate for our present purposes to restrict atten-
tion to nonrotating stars, since the effect of rotation on the
maximum mass, surface redshift, and ISCO is very small
for the observationally relevant spins. For example, pre-
suming the fractional change in maximum mass scales
with the square of the spin, Tables 4 and 5 in Ref. [37]
indicate that even for a 1 ms period the increase of maxi-
mum mass is less than 5% in GR. Barring an unexpected
much greater sensitivity to a small spin in ae-theory, the
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FIG. 1. Graphical representation of (11) (solid line) and (12)
(dashed lines). The allowed region of the parameter space is
below the solid curve, above c� � 0 and to the left of c� � 1.
The radiation damping constraint will restrict to a nearly one-
dimensional subset of this region.

1In [33], the A � 1 curve does not fall entirely in the
otherwise allowed region, but this is due to an error in the
analysis there that has since been corrected [34].
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results we find here for nonrotating stars should be quite
reliable except for the fastest spinning stars.

A. Stellar equations of structure

The static, spherically symmetric form for the metric
and aether can be written in Schwarzschild-like coordi-
nates as

 ds2 � eA�r�dt2 � B�r�dr2 � r2d�2; (13)

 u � e�A�r�=2@t: (14)

Note that since the aether is aligned with the timelike
Killing vector it is completely determined by the metric.
In particular, the aether is at rest with respect to the static
frame at infinity, which means that the star is taken to be at
rest with respect to the aether. When comparing theory and
observation, it is typically assumed that the background
aether frame coincides with that of the cosmological fluid.
Any particular star will of course have some proper motion
with respect to this frame, so strictly speaking the physi-
cally relevant solutions are not of the form (13) and (14).
However, assuming a relative velocity of order 10�3, this
discrepancy should not be significant for comparisons of
much less precision such as concern us here.

It was shown in [35] that for configurations of the form
(13) and (14) the c2 and c3 terms in the action (1) and their
variations are zero, and thus they do not contribute to the
field equations. Also, the effect of the c4 term can be
absorbed by the replacement c1 ! c1 � c4. Hence the
only coupling relevant to these solutions is c14 

c1 � c4. The fluid stress tensor appearing in the metric
field equation (4) is

 TMab � ���r� � P�r��vavb � P�r�gab; (15)

where va � e�A=2�@t�a is the fluid 4-velocity, ��r� its mass
density, and P�r� its pressure.

The metric field equation and the Bianchi identity to-
gether imply that the sum of the aether and fluid energy-
momentum tensors is divergenceless. In addition, since the
aether does not couple directly to the fluid, its stress tensor
is independently divergenceless when its field equation and
unit constraint are satisfied. Therefore the fluid stress ten-
sor is also independently divergenceless in any solution.
Thus, an appropriate system of equations for the aether
plus fluid case is the (i) metric field equation, (ii) aether
field equation, (iii) radial component of raTMab � 0, which
is the hydrostatic equilibrium equation for the fluid

 P0 � 1
2A
0��� P� � 0; (16)

and (iv) an equation of state � � ��P�.
It turns out that the aether field equation (5) has only a t

component, which just determines the Lagrange multiplier
�. The tt, rr, and �� components of the metric field
equation then imply, respectively,

 

0��1�B� r
B0

B

� �
�
8rA0 � r2A02� 2r2A0

B0

B
� 4r2A00

�
��r2B; (17)

 0 � 1� B� rA0 � �r2A02 � Pr2B; (18)

 0 �
1

4

�
2rA0 � 2r

B0

B
� r2A02 � r2A0

B0

B
� 2r2A00

�

� �r2A02 � PB; (19)

where the symbol

 � �
c14

8
(20)

is introduced to compactify the notation, and we have
adopted units with 8�G � 1.

Equation (18) can be used to solve for B,

 B � �1� r2P��1�1� rA0 � �r2A02�: (21)

After substituting this result into (17) and (19), A00 can be
eliminated from this pair of equations, yielding an equation
involving A, A0, P, P0, and ��P�. Because of its complexity
it does not seem illuminating to display it here. This
equation combined with (16) can then be numerically
integrated to solve for P�r� and A�r� starting with initial
values at the origin r � 0. (It is possible to eliminate A0,
leaving one Tolman-Oppenheimer-Volkoff (TOV) type
equation for P�r�. Since this TOV equation is quite com-
plicated and does not aid the numerical integration proce-
dure we will not display it here.)

To numerically integrate outward we find the power
series solution to the Eqs. (16)–(19) in the vicinity of r �
0, which is a singular point for the equations. In this
solution the central value for the pressure P�0� � P0 is
the only free parameter to be specified (A(0) is arbitrary
due to scaling freedom of the t coordinate, so can just be set
to unity). The numerical integration can then be started at a
small value of r using the power series for initial data, and
continued to the value r � R, which is the surface of the
star where the pressure and mass density drop to zero. At
this point the values of A and A0 > 0 can be matched to the
static vacuum aether solution discussed in [35] and sum-
marized in the next section.

B. Vacuum solution

In the exterior (21) becomes

 B � 1� rA0 � �r2A02; (22)

and the remaining field equations (17) and (19) can be
reduced to the second order ordinary differential equation
(ODE)

 r2A00 � 2rA0 � r2A02 � �r3A03 � 0: (23)
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With the substitution

 Y � rA0; (24)

(23) becomes a first order equation for Y�r� that can solved,
after which (24) can be solved for A�Y�. In terms of the
roots of B,

 Y	 � ��1	
���������������
1� 4�
p

�=�2��; (25)

the result is

 B � ��Y � Y���Y � Y��; (26)

 N � eA �
�
1� Y=Y�
1� Y=Y�

�
�Y�=�2�Y��

; (27)

and

 

rmin

r
�

�
Y

Y � Y�

��
Y � Y�
Y � Y�

�
1=�2�Y��

; (28)

where rmin is an integration constant. Thus the complete
solution is known up to the inversion of the function on the
right-hand side of (28).

As in GR, the solutions in this family are all asymptoti-
cally flat. The limit Y ! 0 corresponds to spatial infinity,
where the limiting form of the solution is

 B � 1� Y � � � � ; (29)

 N � 1� Y � � � � ; (30)

 Y � rg=r� � � � : (31)

Here rg is the gravitational radius, which is related to the
gravitational massM appearing in the Newtonian potential
by

 rg � 2GNM: (32)

The relation between rg and the minimum radius2 rmin is
given by

 rmin=rg � ��Y���1��1� Y���1�Y��=�2�Y��: (33)

To leading order in 1=r this solution agrees with the
Schwarzschild solution of GR. The total gravitational
mass M of the fluid star can be read off from (33) together
with (28), using the definition (24), Y�R� � RA0�R�.

1. Surface redshift

The light emitted from the surface of the neutron star is
redshifted as it climbs away to a distant observer. From
(13), the surface redshift factor z is given by

 z � �N�R���1=2 � 1; (34)

which can be evaluated directly from the numerical solu-
tion using (24) and (27).

2. ISCO

The orbits in the metric (13) have conserved energy e �
N _t and angular momentum ‘ � r2 _’, where N � eA and
the overdot stands for derivative with respect to proper
time. Since the parameter is proper time, the four-velocity
has unit norm. This condition can be expressed in the form

 _r 2 � V�r� � B�1W; (35)

with

 W � W�r; e; ‘� � N�1�r�e2 � r�2‘2 � 1: (36)

The ISCO is determined by the conditions V � V0 �
V00 � 0, or equivalently, W � W0 � W00 � 0, where the
prime stands for derivative with respect to r. Thus the
metric function B plays no role. These equations determine
r, e, and ‘ at the ISCO. After some manipulation of the
equations we obtain

 YISCO �
�1�

������������
1� �
p

�
: (37)

With this result, the radius of the ISCO can be found from
(28) and (33) given the mass. Expanding in � � c14=8 we
find (in units with GNM � 1)

 rISCO ’ 6�1� �ln�3=2� � 1=6��� ’ 6�1� 0:030c14�;

(38)

dropping O��2� terms. This linear approximation is ex-
tremely accurate: the relative error grows monotonically
from 0 to only about 0.3% over the entire allowed range of
c14 from 0 to 2.

The angular frequency of an orbit with respect to time at
infinity is given by ! � _’= _t � �‘=e��N=r2�. The circular
orbit condition yields N‘=e � �N0r3=2�1=2 � r�YN=2�1=2,
so ! � r�1�YN=2�1=2. Expanding again in �, the fre-
quency at the ISCO is found (in units withGNM � 1) to be

 !ISCO ’
1

6
��
6
p �1� ��2 ln�3=2� � 1=2���

’ 1
6
��
6
p �1� 0:039c14�; (39)

dropping O��2� terms.
Thus, even for the maximum value c14 � 2, the location

of the ISCO is only about 6% larger than its value in GR for
a star of the same mass, and the orbital frequency is about
8% smaller. Since ae-theory agrees so closely with GR on
these quantities, it is unlikely that in the near future any
useful constraints can be obtained from their behavior for
slowly rotating stars. However, as we discuss in Sec. V, for
the ISCO of a rapidly rotating black hole the deviations
from GR may well be much more pronounced.

2In the pure vacuum solution, there is a minimal 2-sphere
‘‘throat’’ at r � rmin. In a fluid star solution the radius of the star
is always greater than rmin, so there is no throat in the spatial
geometry [35].
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IV. NUMERICAL RESULTS

Here we will compare the properties of neutron stars in
GR and ae-theory using three hadronic and three quark
equations of state (EOS). We label these according to
whether they are softer (s), medium (m), or harder (h), by

 Hs ;Hm;Hh$ A18;A18�vUIX;A18UIX; (40)

 Qs ;Qm;Qh$ �90; 0�; �60; 200�; �60; 0�: (41)

The hadronic models are discussed in [38], and the quark
models are MIT bag models [39] determined by two pa-
rameters �B;ms�, with the bag constant B measured in
MeV=fm3 and the strange quark mass ms in MeV.

The pressure and mass density data tables for these
models [40] were converted from cgs units to geometrized
units, i.e. replacing the energy density � and pressure p by
GN�=c

4 and GNp=c
4, respectively, yielding quantities

with dimension inverse length squared. A curve fitting
procedure was then used to generate an equation of state
function ��P� suitable for the numerical integration. The
field equations (17)–(19) are written in units with 8�G �
c � 1, so to apply them we first multiply the density and
pressure in the above geometrized units by 8�G=GN �
8��1� c14=2�.

In GR five of the six equations of state have associated
M versus P0 curves containing a maximum mass extre-
mum and regions of stability and instability. The exception
is the softest quark EOS, Qs, which appears to asymptote to
its maximum mass value. The GR maximum mass values
for the Hm and Hs equations of state we find here (2:20M�
and 1:67M�, respectively) agree very well with the results
obtained in [38]. The maximum mass value in ae-theory
grows smaller and occurs at smaller values of central
pressure as c14 is increased. For the Qs EOS extrema begin
to develop in the M versus P0 curve as c14 approaches 1.
Figure 2 shows a plot of M vs R for the Hm EOS, each
point being determined by a value of P0, for several values
of c14. As P0 increases the mass values increase sharply to
peaks and then gradually fall off. The region of the curves
for small P0 and larger R up to the mass maximum describe
stable equilibrium configurations. Beyond the maximum
the neutron stars are unstable. In ae-theory the minimum
radius where the equilibrium configuration is stable de-
creases as c14 increases.

A plot of the maximum mass values for the six equations
of state considered in this paper is shown in Fig. 3.
Horizontal lines mark the certain lower bound of 1:44M�
and a benchmark value of 2:0M�. The dependence of the
maximum mass on c14 is very close to linear for the quark
models, with the mass changing by roughly 6% as c14

increases from 0 to 1. For the hadronic models it is roughly
linear but steeper, decreasing by roughly 15% over the
same range of c14.

A. Maximum mass constraints

The most straightforward constraint on ae-theory comes
from comparing the maximum mass values generated with
the six equations of state to observations of neutron star
masses in binary pulsars. These masses are not directly
measured, but inferred from the timing data from a binary
pulsar system. This data contains information on the
Keplerian and post-Keplerian parameters of the system,
which depend on the unknown masses mA and mB of the
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FIG. 2. Total mass versus R for the Hm equation of state for P0

up to 100 and c14 � 0, 0.05, 0.2, 0.5, 1 beginning with the upper
(GR) curve. The vertical axis is units of solar masses and the
horizontal in km. The GR curve reaches its maximum mass of
2:20M� at slightly more than 10 km. As c14 increases to 1 the
maximum mass decreases and the value of the radius at the
maximum falls to about 9.5 km.
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FIG. 3. Maximum mass vs c14 for the six equations of state.
The hadronic models are plotted with solid lines, while the quark
models are dashed lines. The thick solid horizontal lines repre-
sent the bare minimum constraint of 1:44M� and a possible
constraint value of 2M�.
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neutron stars. A determination of the Keplerian and two
post-Keplerian parameters, such as the secular rate of
periastron advance and the magnitude of the Shapiro delay,
result in two curves in a �mA;mB�mass plane. The value of
the two masses is the intersection of these curves. Since we
are considering the subset of Einstein-aether theories that
satisfies the post-Newtonian constraints, any corrections to
how the post-Keplerian parameters depend on the pulsar
masses would only appear at higher order and is therefore
very small. Thus, the masses can be inferred as in GR to a
good approximation. If the maximum mass predicted by
Einstein-aether theory is smaller than an observed neutron
star mass then the theory is ruled out. Currently the largest
reliable observed mass value is 1:44M� from the PSR
1913� 16 Hulse-Taylor binary system.

There are, however, suggestions from various data that
neutron star masses can be at least2M�. The neutron star
in Vela X-1 has an estimated mass of 1:88	 0:13M� [41],
and PSR J0751, a pulsar in a detached low-mass binary, has
a reported mass of 2:1	 0:2M� [42]. Furthermore, there
are indications (although not as definitive) for neutron star
masses greater than or of order two solar masses in several
low-mass x-ray binaries based on the inference of the
orbital frequency at the ISCO from their kilohertz quasi-
periodic brightness oscillations (QPO’s) [43–46]; for an
alternative view, see [47]. At the<700 Hz spin frequencies
of these stars, the dimensionless angular momentum is
only 0.1 to 0.3 [37], so this would imply that the ISCO is
obtained from a near-Schwarzschild spacetime. Since the
ISCO we find in Sec. III B 2 is very close to the GR value,
the derived mass should be the same in ae-theory as in GR
to a good approximation. As a benchmark, we will con-
sider the limits on c14 that would result from a measured
gravitational mass of 2M�.

Figure 3 shows that in GR (c14 � 0) all six equations of
state respect the lower bound of 1:44M� solar masses. For
four of the equation of state models the 1:44M� mass
cutoff does not yield any constraint on c14. For the Hs
and Qs EOS there are weak constraints that c14 be less than
about 1.2 and 1.5, respectively. The 2M� constraint is more
restrictive. In this case the Hs, Qs, Qm, and Qh EOS are
ruled out, while for Hm and Hh c14 must be less than about
0.55 and 1.16, respectively.

As the maximum observed neutron star mass is pushed
upwards, and more is learned about the nuclear EOS, the
observational upper bound on c14 will come down. If we
assume the existence of a nonrotating neutron star of 2M�,
then even for the hardest equation of state we have con-
sidered we obtain the bound c14 < 1:16.

B. Surface redshift constraints

There is not yet a definitive detection of an atomic
spectral line from the surface of a neutron star. The stron-
gest current case comes from stacked observations of
thermonuclear x-ray bursts from EXO 0748-676, from

which a surface redshift of 0.35 was inferred [48] based
on identification of some absorptionlike features as being
produced by highly ionized iron. The mass of this star is
not certain, but Özel [49] used simplifying assumptions
about the constancy of the peak flux of the bursts and
radiative transfer to suggest that the mass of this object is
probably not less than 1:8M�.

Measurements such as these, once confirmed, can pro-
vide a joint constraint on c14 and the equation of state via
the dependence of surface redshift on mass in ae-theory.
(We have checked that the mass inferred using the method
of Ref. [49] differs from the GR value by less than 2%
when c14 � 1, so the leading order effect of c14 is only in
the relation between radius and mass, equivalently redshift
and mass.) Figure 4 shows a plot of z versus c14 for 1:8M�
stars using the Hm, Hh, and Qh EOS. These are the three
hardest equation of state models and have equilibrium
configurations at this mass. (As shown in Fig. 3, the other
three softest equation of state models do not have equilib-
rium configurations at this mass.) The surface redshifts
increase by roughly 10% as c14 ranges from 0 to 1.

If in the future surface redshifts together with masses
can reliably be determined, then tight constraints on the
equation of state in GR may be obtained by combining
measurements for a collection of stars. It is also possible
that single measurements may provide stringent con-
straints. For example, as revealed in Fig. 4, the proposed
surface redshift 0.35 of EXO 0748-676 [48] is compatible
with 1:8M� only for the hardest EOS (Hh) among those we
considered. In general, the parameter c14 could not be
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FIG. 4. Surface redshift factor z versus c14 for 1:8M� neutron
stars using the hardest equations of state. Hm (solid line) is on
top, Qh (dashed line) is in the middle, and Hh (solid line) is on
the bottom. Note that the GR value of z � 0:35 for the hardest
EOS, Hh, is consistent with the proposed surface redshift of 0.35
for EXO 0748-676 [48]. The Hm and Qh lines begin to curve up
near c14 � 1:1–1:2 because the maximum mass for these equa-
tions of state is approaching 1:8M�.
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constrained without separate knowledge of the equation of
state. However, in the example just mentioned one could
serendipitously tightly constrain both the equation of state
and the value of c14, since a redshift of 0.35 is the lower
limit of all the curves at this mass.

V. DISCUSSION

We have found that the structure of nonrotating neutron
stars in Einstein-aether theory is fairly close to that in
general relativity, but there are quantitative differences.
Depending on the equation of state, the maximum masses
range from about 6%–15% smaller than in GR when the
ae-theory parameter c14 is equal to 1. The corresponding
surface redshifts are roughly 10% larger than in GR.
Measurements of high gravitational masses or precise sur-
face redshifts have the potential to yield strong joint con-
straints on the equation of state and on deviations from GR.
Therefore, as laboratory experiments and other observa-
tions narrow down the equation of state of cold matter at
several times nuclear density, neutron star observations
may be a valuable resource for exploring deviations from
general relativity in strong gravity.

We now make some comments about related further
work that would be interesting to pursue. First, the neutron
star solutions we considered are at rest with respect to the
asymptotic aether. Although corrections due to motion
with respect to the aether are not significant for the present
paper, they are important for the high precision predictions
of radiation damping in compact binaries. In particular, the
missing ingredient in the analysis of [34] is the value of the

‘‘sensitivity’’ parameter measuring the velocity depen-
dence of the mass. It should be possible to compute this
parameter for different masses and different equations of
state by determining the velocity perturbations of the so-
lutions found here, or by finding the exact nonlinear solu-
tions with finite velocity.

We considered in this paper only neutron star phenome-
nology. What is the situation for black holes? It was found
in [36] that although different from stellar exteriors, non-
rotating black hole solutions in ae-theory are very similar
to the Schwarzschild solution of GR. Hence it is not likely
that these could lead to significant constraints.

Nevertheless, it is quite conceivable that strong devia-
tions from GR will be found for rapidly rotating black hole
solutions. This is suggested by the presence of the ergore-
gion, in which the inertial frames are strongly dragged. The
preferred frame aspects of ae-theory may be conspicuous
here, due to larger gradients in the aether field. Also, unlike
for the spherically symmetric nonrotating case, the spin-1-
degrees of freedom of the aether could be activated in the

axially symmetric setting. To explore these issues would
require finding numerical solutions describing rotating
black holes in Einstein-aether theory.
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