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ABSTRACT

We present numerical three-body experiments that include the effects of gravitational radiation reaction by using
equations of motion that include the 2.5-order post-Newtonian force terms, which are the leading-order terms of
energy loss from gravitational waves. We simulate binary-single interactions and show that close-approach cross
sections for three 1 M� objects are unchanged from the purely Newtonian dynamics except for close approaches
smaller than 10�5 times the initial semimajor axis of the binary. We also present cross sections for mergers resulting
from gravitational radiation during three-body encounters for a range of binary semimajor axes and mass ratios
including those of interest for intermediate-mass black holes (IMBHs). Building on previous work, we simulate
sequences of high–mass-ratio three-body encounters that include the effects of gravitational radiation. The simu-
lations show that the binaries merge with extremely high eccentricity such that when the gravitational waves are
detectable by LISA, most of the binaries will have eccentricities e > 0:9, although all will have circularized by the
time they are detectable by LIGO. We also investigate the implications for the formation and growth of IMBHs and
find that the inclusion of gravitational waves during the encounter results in roughly half as many black holes ejected
from the host cluster for each black hole accreted onto the growing IMBH.

Subject headinggs: black hole physics — galaxies: star clusters — globular clusters: general —
gravitational waves — methods: n-body simulations — stellar dynamics

1. INTRODUCTION

With increasing evidence in support of the existence of
intermediate-mass black holes ( IMBHs), interest in these objects
as gravitational wave sources is growing. With masses �102–
104 M�, IMBHs are black holes that are more massive than
stellar-mass black holes yet smaller than supermassive black
holes found at the centers of galaxies. The primary motivation for
IMBHs comes from observations of ultraluminous X-ray sources
(ULXs): extragalactic, nonnuclear point sources with inferred bo-
lometric luminosities Lk 3 ; 1039 ergs s�1 (see Miller & Colbert
2004 for a review). Such luminosities are greater than the Eddington
luminosity of a 20M� object, which is the highest mass black hole
that can be produced with roughly solar metallicity stellar evolution
(Fryer & Kalogera 2001). The ULXs are thought to be powered by
black holes because many are variable, but they cannot be powered
by supermassive black holes or they would have sunk to the center
of their host galaxies because of dynamical friction.

If, however, the intrinsic luminosity is much smaller than that
inferred from the X-ray flux because the observed emission
originates from a narrow beam directed toward us, then the lower
limit on the mass can fall into stellar-mass black hole range
(King et al. 2001). In such a case, these objects would be stellar-
mass analogs of blazars. There is, however, evidence in support
of quasi-isotropic emission from ULXs. First, recent observa-
tions of a LX � 1040 ergs s�1 ULX in the Holmberg II dwarf ir-
regular galaxy show He ii emission from gas surrounding the
ULX and line ratios in agreement with photoionization from a
quasi-isotropically emitting X-ray source, thus giving weight to
the picture that ULXs are more massive than stellar-mass black
holes (Kaaret et al. 2004; Pakull & Mirioni 2001). Second, ob-
servations of ULX spectra that are fit with a combined power-law
and multicolored disk model indicate disk temperatures much
lower than those found in known stellar-mass black hole X-ray
binaries (Miller et al. 2004). The temperature should scale as
T � M�1/4, and thus the inferred temperatures also favor a larger

mass. Finally, Strohmayer & Mushotzky (2003) discovered a
quasi-periodic oscillation (QPO) in the X-ray brightness of the
brightest ULX in M82 (M82 X-1), whose X-ray luminosity is
LX � 8 ; 1040 ergs s�1. The QPO, which has an rms amplitude
of 8.5% at a centroid frequency of 54 mHz, is thought to come
from the disk but is too strong to be consistent with a beamed
source that is powered by a stellar-mass black hole. Thus, there
is strong evidence that at least some ULXs cannot be beamed
stellar-mass X-ray binaries. There has also been theoretical work
that suggests radiation-driven inhomogeneities can allow lumi-
nosities up to 10 times the Eddington limit (Begelman 2002;
Ruszkowski & Begelman 2003), but the most luminous ULXs
would still require a black hole more massive than stellar-mass
black holes to power their bright, variable X-ray luminosity.
A key to understanding ULXs and IMBHs is their environ-

ment. ULXs are often found in starburst galaxies and in associa-
tions with stellar and globular clusters. For example, M82 X-1,
one of the most promising IMBH candidates, is spatially coinci-
dent with the young stellar cluster MGG 11 as determined by
near-infrared observations (McCrady et al. 2003). Numerical sim-
ulations of MGG 11 show that due to its short dynamical friction
timescale compared to the main-sequence lifetime of the most
massive stars, runaway growth by collisions between massive
stars can cause a star to grow to �3000M�, after which it could
evolve into an IMBH (Portegies Zwart et al. 2004). Fabbiano et al.
(2001) found a spatial correlation of ULXs with stellar clusters in
the merging Antennae system in excess of that expected from a
uniform distribution of ULXs. A comparison ofChandra andHST
images of the CD galaxy NGC 1399 at the center of the Fornax
cluster shows a spatial correlation between many of its X-ray point
sources and its globular clusters (Angelini et al. 2001). TheseX-ray
point sources include two of the three sources with LXk 2 ;
1039 ergs s�1, and the globular cluster and X-ray positions agree to
within the combined astrometric uncertainties. In addition, evi-
dence from radial velocities of individual stars in M15 as well as
velocity and velocity dispersion measurements in G1 indicate that
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these globular clusters may harbor large dark masses in their cores
[�3000 and (1:7 � 0:3) ; 104 M�, respectively; Gebhardt et al.
2000, 2002, 2005; Gerssen et al. 2002]. For M15 the data cannot
rule out the absence of dark mass at the 3 � level, but the most
recent observations of G1 can rule out the absence of dark mass at
the 97% confidence level (Gebhardt et al. 2005). In both cases, the
observations are of special interest because they are the only direct
dynamical measurements of the mass of possible IMBHs. Finally,
the Galactic globular cluster NGC 6752 contains two millisecond
pulsars with high, negative spin derivatives in its core, as well as
two other millisecond pulsars well into the halo of the cluster at
3.3 and 1.4 times the half-mass radius of the globular cluster (Colpi
et al. 2002, 2003 ). The pulsars in the cluster core can be explained
by a line-of-sight acceleration by 103 M� of dark mass in the cen-
tral 0.08 pc (Ferraro et al. 2003). While the pulsars in the outskirts
of the cluster can be explained by exchange interactions with bi-
nary stars, themost likely explanation is that theywere kicked from
the core in a close interaction with an IMBH, either a single IMBH
or a binary that contains an IMBH (Colpi et al. 2002, 2003).

One of the most intriguing questions regarding IMBHs is the
method of their formation. They must form differently than
stellar-mass black holes, which are the result of a core-collapse
supernova and have a maximum mass of 20 M�, and they are
distinct from supermassive black holes, which have masses 106–
109 M� and are found at the centers of galaxies. Several studies
have found that IMBHsmay form in young stellar clusters where
a core collapse leads to direct collisions of stars (Ebisuzaki et al.
2001; Gürkan et al. 2004; Portegies Zwart & McMillan 2002).
Miller & Hamilton (2002b) proposed that IMBHs form from the
mergers of stellar-mass black holes in a dense globular cluster,
and Gültekin et al. (2004, hereafter Paper I) expanded this to
include the mergers of stellar-mass black holes with the merger
remnant of a young stellar cluster core collapse.

Of particular interest is the study of IMBHs as sources of de-
tectable gravitational waves (Hopman & Portegies Zwart 2005;
Matsubayashi et al. 2004;Miller 2002;Will 2004). Orbiting black
holes are exciting candidates for detectable gravitational waves.
At a distance d, a mass m in a Keplerian orbit of size r around a
mass M 3m produces a gravitational wave amplitude of

h � G2

c4
Mm

rd
¼ 4:7 ; 10�25 M

M�

� �
m

M�

� �
r

AU

� ��1 d

kpc

� ��1

;

ð1Þ

where G is the gravitational constant and c is the speed of light.
For comparison, with 1 yr integrations the Laser Interferometer
Space Antenna (LISA) and Advanced Laser Interferometer
Gravitational-Wave Observatory (LIGO) are expected to reach
down to sensitivities of 10�23 at frequencies of 10 mHz and
100 Hz, respectively. Thus, binaries containing IMBHs with
M k 100 M� with small separations at favorable distances are
strong individual sources. During inspiral, the frequency of grav-
itational waves increases as the orbit shrinks until it reaches the
innermost stable circular orbit ( ISCO) where the orbit plunges
nearly radially toward coalescence. Because of the quadrupolar
nature of gravitational waves, the gravitational wave frequency
for circular binaries is twice the orbital frequency. At the ISCO
for a nonspinning black hole with M 3m, where rISCO ¼
6GM /c2 and h � Gm/6c2d is independent of the mass of the
primary, the gravitational wave frequency is

fGW ¼ 2forb ¼ 2
GM

4�2r3ISCO

� �1=2

� 4400 Hz
M�

M

� �
: ð2Þ

Thus, a binary with a 100 M� black hole will pass through the
LISA band (10�4 to 100 Hz; Danzmann 2000) and into the bands
of ground-based detectors such as LIGO, VIRGO, GEO-600,
and TAMA (101–103 Hz; Fidecaro et al. 1997; Schilling 1998;
Barish 2000; Ando et al. 2002), whereas a 1000M� black hole
will be detectable by LISA during inspiral but will not reach
high enough frequencies to be detectable by currently planned
ground-based detectors. After the final inspiral phase, the grav-
itational wave signal goes through a merger phase, in which the
horizons cross, and a ring-down phase, in which the spacetime
relaxes to a Kerr spacetime (Flanagan & Hughes 1998a, 1998b;
Cutler & Thorne 2002). The merger and ring-down phases emit
gravitational waves at a higher frequency with a characteristic
ring-down frequency of f � 104 Hz(M /M�)

�1 so that mergers
with more massive IMBHs will still be detectable with ground-
based detectors.

IMBHs in dense stellar systems are a unique source of grav-
itational waves. Through mass segregation, the most massive
objects will sink to the center of a stellar cluster as dynamical
interactions between objects tend toward equipartion of energy.
For a cluster that is old enough to contain compact stellar rem-
nants, the stellar-mass black holes, including those in binary sys-
tems, and IMBHs will congregate at the center and interact more
frequently. For any reasonable mass function, the total mass of
black holes in a cluster is large enough that mass segregation is a
runaway process, known as the ‘‘mass stratification instability’’
(e.g., O’Leary et al. 2006). Through an exchange bias in which
the most massive objects tend to end up with a companion after a
three-body encounter, IMBHs will swap into binaries. Thus, in a
dense stellar system with an IMBH and massive binaries, the
IMBH is likely to be found in the binary and to be a potential
strong source of gravitational waves. The IMBH-containing
binary will continue to interact with objects in the cluster and to
acquire ever more massive companions. In Paper I we found that
a binary with an IMBH that undergoes repeated interactions in a
stellar cluster will have a very high eccentricity after its last
encounter before merging, and a significant fraction will retain a
measurable eccentricity (0:1P eP0:2) when they are most easily
detectable with LISA (see also O’Leary et al. 2006). Because
detection of inspiral requires the comparison of the signal to a pre-
computed waveform template that depends on the orbital prop-
erties of the binary, knowing the eccentricity distribution is useful.
For eP 0:2, circular templates are accurate enough to detect the
gravitational wave signal with LIGO (Martel & Poisson 1999),
and this is likely to be the case for LISA as well.

If stellar clusters frequently host IMBHs, then currently planned
gravitational wave detectors may detect mergers within a reason-
able amount of time. Optimistic estimates put the upper limit to the
Advanced LIGO detection rate of all black holes in dense stellar
clusters at�10 yr�1 (O’Leary et al. 2006). The LISA detection rate
for 1 yr integration and signal-to-noise ratio (S/N) of 10 is (Will
2004)

�det � 10�6 H0

70 km s�1 Mpc�1

� �3
ftot

0:1

� �
�

10 M�

� �19=8

;
Mmax

100 M�

� �13=4

ln
Mmax

Mmin

� ��1

yr�1; ð3Þ

where H0 is the Hubble constant, ftot is the total fraction of glob-
ular clusters that contain IMBHs, � is the reduced mass of the
merging binary, and Mmin and Mmax denote the range in masses
of IMBHs in clusters. If we assume that Mmax ¼ 103 M�, � ¼
10 M�, ftot ¼ 0:8 (O’Leary et al. 2006),H0 ¼ 70 km s�1 Mpc�1,
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and Mmin ¼ 102 M�, then we get a rate of 0.006 yr�1. This,
however, implies that 103 M� black holes are continuously ac-
creting 10M� black holes, which is unlikely to be the case. Since
the distance out to which LISA can detect a given gravitational
wave luminosity DL scales as the square root of the integration
time T, the volume probed scales as V � D3

L � T3/2. This means
that a 10 yr integration could yield a rate of 0.2 yr�1, and if
IMBHs with mass M ¼ 104 M� are common, the rate could be
much higher. These rates, however, are optimistic and should be
considered as upper limits. A gravitational wave detection of an
IMBH with high S/N could also yield the spin parameter and
thus shed light on the formationmechanism of the IMBH (Miller
2002). A full understanding of the gravitational wave signals
from IMBHs requires a more detailed study of the complicated
dynamics and gravitational radiation of these systems.

In this paper we present a study of the dynamics of black holes
in a stellar cluster using numerical simulations that include the
effects of gravitational radiation. We include gravitational radi-
ation reaction by adding a drag force to the Newtonian gravita-
tional calculation. Our treatment is similar to that of Lee (1993),
but we focus on individual encounters, sequences of encounters,
and the resulting mergers instead of ensemble properties of the
host cluster. Paper I incorporated gravitational radiation by in-
tegrating the Peters (1964) orbit-averaged equations for orbital
evolution of a binary that is emitting gravitational waves, but in
this paper we include the energy loss from gravitational radiation
for arbitrary motion of the masses. Although the vast majority of
three-body interactions do not differ greatly fromapurelyNewtonian
simulation, an important few involve close approaches in which
gravitational waves carry away a dynamically significant amount
of energy such that it may cause the black holes to merge quickly
in the middle of the encounter. This is qualitatively different from
the mergers in Paper I, which were caused by gravitational waves
emitted by isolated binaries between encounters, and this new
effect is important in considering detectable gravitational waves as
well as IMBH growth.

In x 2 we describe our method of including gravitational
waves as a drag force as well as numerical tests of its accuracy.
We present our simulations and major results in x 3, and we dis-
cuss the implications for IMBH formation and gravitational wave
detection in x 4.

2. NUMERICAL METHOD

The numerical method we use here is much the same as that
described in x 2 of Paper I. In order to study the dynamics of a
massive binary in a dense stellar environment, we simulate the
encounters between the binary and single objects. We include
both individual encounters and sequences of encounters, all of
which include gravitational radiation emission.When simulating
sequences, we allow the properties of the binary to evolve from
interactions with singles, and we follow the binary until a merger
occurs. A merger is determined to occur when the separation
between the two masses is less thanG(m0 þ m1)/c

2. The simula-
tions are run using the same code as in Paper I with a few ex-
ceptions. The integration engine is now HNDrag, which is an
extension of HNBody (K. Rauch & D. Hamilton 2006, in
preparation).1 Both HNBody and HNDrag can include the
first-order post-Newtonian corrections responsible for peri-
center precession based on the method of Newhall et al. (1983).
HNDrag also has the ability to include pluggable modules that
can add extra forces or perform separate calculations such as

finding the minimum separation between all pairs of objects. In
this paper we ignore the second-order post-Newtonian terms,
which contribute higher order corrections to the pericenter pre-
cession, and we include the effects of gravitational radiation on
the dynamics of the particles through the addition of a force that
arises from the 2.5-order post-Newtonian equation of motion for
two point masses. The acceleration of a mass m0 from gravita-
tional waves emitted in orbit around a mass m1 can be written as

dv0
d�

¼ 4G2

5c5
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where r ¼ r1 � r0 and v ¼ v1 � v0 are the relative position and
velocity vectors between the two masses (Damour & Deruelle
1981; Damour 1982, 1983; for more recent treatments that use
different techniques and arrive at the same result, see Itoh et al.
2001; Blanchet et al. 1998). Since equation (4) introduces a
momentum flux on the center of mass of the system, we parti-
tion the force so that it is equal and opposite and for reasons of
computational efficiency to get an acceleration of

dv0
dt

¼ 4G2
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This expression is equivalent to equation (21) from Lee (1993).
When orbit-averaged, equation (5) gives the Peters (1964)
equations for semimajor axis and eccentricity evolution:

da

dt
¼ � 64

5

G3m0m1 m0 þ m1ð Þ
c5a3 1� e2ð Þ7=2

1þ 73

24
e2 þ 37
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e4
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; ð6Þ

de

dt
¼ � 304

15

G3m0m1 m0 þ m1ð Þ
c5a4 1� e2ð Þ5=2

eþ 121

304
e3

� �
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We tested the inclusion of this force in the integrator by com-
parison with direct, numerical integration of equations (6) and
(7) for two different binaries with masses m0 ¼ m1 ¼ 10 M�
and initial semimajor axis a0 ¼ 1 AU: one with initial eccen-
tricity e0 ¼ 0 and one with initial eccentricity e0 ¼ 0:9 (Fig. 1).
TheN-body integration of these binaries made use of HNDrag’s
enhancement factor, which artificially augments the magnitude
of the drag forces for the purposes of testing or simulating long-
term effects. For this test and all numerical integrations with
HNDrag, we used the fourth-order Runge-Kutta integrator. For
both the circular and the high-eccentricity cases, the N-body
integrations agree very well with the Peters (1964) equations.
Examination of equation (5) reveals that even though physi-
cally the emission of gravitational radiation can only remove
energy from the system, the equation implies Ė > 0 for r̂ = v̂ > 0
in hyperbolic orbits, becoming worse as the eccentricity increases
(Lee 1993). Integration of equation (5) over an entire orbit, how-
ever, does lead to the expected energy loss. This is because there is
an excess of energy loss at pericenter, which cancels the energy
added to the system (Lee 1993). Thus, this formulation does not
introduce significant error as long as the integration is calculated
accurately at pericenter, which we achieve by setting HNDrag’s1 See http://janus.astro.umd.edu/HNBody.
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relative accuracy parameter to 10�13, and the two objects are
relatively isolated, which we discuss below.

We also tested the N-body integration with gravitational ra-
diation for unbound orbits against the maximum periastron sep-
aration for two objects in an initially unbound orbit to become
bound to each other (Quinlan & Shapiro 1989):

rp;max ¼
85�

ffiffiffi
2

p
G7=2m0m1 m0 þ m1ð Þ3=2

12c5v21

" #2=7

; ð8Þ

where v1 is the relative velocity at infinity of the two masses. In
Figure 2 we plot the orbits integrated both with and without
gravitational radiation for two different sets of initial conditions
that straddle the rp;max threshold. For both sets of initial condi-
tions, the integrations with gravitational radiation differ from the
Newtonian orbits, and the inner orbit loses enough energy to be-
come bound and ultimately merge. We used a bisection method
of multiple integrations to calculate rp;max, and our value agrees
with that of Quinlan & Shapiro (1989) to a fractional accuracy of
better than 10�5.

For systems of three or more masses, we compute gravitational
radiation forces for each pair of objects and add them linearly. Al-
though this method differs from the full relativistic treatment,
which is nonlinear, the force from the closest pair almost always
dominates. We can estimate the probability of a third object com-
ing within the same distance by examining the timescales for an
example system. A binary black hole systemwithm0 ¼ 1000M�
andm1 ¼ 10 M� with a separation a ¼ 10�2 AU (�1000M ) will
merge within (Peters 1964)

�merge � 6 ; 1017
1 M�ð Þ3

m0m1 m0 þ m1ð Þ
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; 1� e2
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yr � 600 yr: ð9Þ

The expression for merger time in equation (9) is valid for the
high eccentricities (e ! 1) of interest to this paper. The rate of

gravitationally focused encounters with a third mass m2 within
a distance r from an isotropic distribution is

�enc ¼ 5 ; 10�8 10 km s�1
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� �
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1 M�

� �1=2
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(see Paper I). For a number density n ¼ 106 pc�3, a relative ve-
locity v1 ¼ 10 km s�1, and an interloper mass m2 ¼ 10 M�, the
rate of encounters within the same distance r ¼ a ¼ 10�2 AU is
�enc � 2 ; 10�6 yr�1. Thus, the probability of an encounter within
the same distance is P � �merge�enc � 10�3 for this mildly rela-
tivistic case. For a separation of 10�3 AU, the probability drops to
10�8. Thus, for most astrophysical scenarios and for all simula-
tions in this paper, the error incurred from adding the gravitational
radiation force terms linearly is negligible.

3. SIMULATIONS AND RESULTS

3.1. Individual Binary-Single Encounters

3.1.1. Close Approach

We begin our study of three-body encounters including grav-
itational radiation by calculating the minimum distance between
any two objects during the binary-single scattering event. This
quantity has beenwell studied for the Newtonian case, but it is still
not completely understood (Hut & Inagaki 1985; Sigurdsson &
Phinney 1993). We present 105 simulations of a circular binary
withmassesm0 ¼ m1 ¼ 1 M� and an initial semimajor axis a0 ¼
1 AU interacting with an interloper of mass m2 ¼ 1 M� in a hy-
perbolic orbit with respect to the center of mass of the binary.
Throughout this paper, we refer to the mass ratios of three-body
encounters asm0 : m1 : m2, wherem2 is the interloper and the bi-
nary consists of m0 and m1, with mbin ¼ m0 þ m1 and m0 � m1.
The relative velocity of the binary and the interloper at infinity is

Fig. 2.—HNDrag-integrated orbits with and without gravitational radiation
inside and outside of two-body capture pericenter. This plot shows orbits of two
10 M� black holes with relative velocity of 10 km s�1 and pericenter distances
of rp ¼ 0:2rp;max and 1:2rp;max. The lines show the orbits with gravitational
radiation included in the integration, and the diamonds show the Newtonian
orbits for the same initial conditions. The direction of the orbit is indicated by
the arrow. Although it is not apparent for the outer orbit in this plot, both
trajectories differ from their Newtonian counterparts. For the inner orbit, enough
energy is radiated away for the black holes to become bound to each other and
eventually merge.

Fig. 1.—Comparison of HNDrag integration with numerical integration of
Peters (1964) equations for an eccentric binary. Lines are numerical integration
of eq. (6) for semimajor axis (solid line) and of eq. (7) for eccentricity (dashed
line). The symbols are results from HNDrag integration with gravitational ra-
diation for semimajor axis (diamonds) and eccentricity (squares). The binary
shown has m0 ¼ m1 ¼ 10 M� with an initial orbit of a0 ¼ 1 AU and e0 ¼ 0:9.
The evolution of the binary’s orbital elements is in very close agreement for the
entire life of the binary.
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v1 ¼ 0:5 km s�1 with an impact parameter randomly drawn from
a distribution with a probability P(b) / b and a maximum value
bmax ¼ 6:621 AU, which corresponds to a two-body pericenter
distance of rp ¼ 5a. The encounters are integrated until finished
as determined in Paper I while tracking the minimum distances
between all pairs of objects. We follow Hut & Inagaki (1985) and
Sigurdsson & Phinney (1993) in calculating a cumulative, nor-
malized cross section for close approach less than r:

� rð Þ ¼ f rð Þb2max

a20

v1
vc

� �2

; ð11Þ
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G
m0m1
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m0 þ m1 þ m2ð Þ
m0 þ m1ð Þ

s
ð12Þ

is the minimum relative velocity required to ionize the system
and f (r) is the fraction of encounters that contain a close ap-
proach less than r. We plot � r/a0ð Þ for the Newtonian case at
several different time intervals within the encounter in Figure 3.
Our results for the total cross section are in almost exact agree-
ment with Sigurdsson & Phinney (1993) over the domain of
overlap, but with the advantage of 10 years of computing ad-
vances, we were able to probe down to values of r/a0 that are
102 times smaller. In addition, we examine how the total cross
section evolves from the initial close approach of the binary
until the end of the interaction through subsequent near passes
during long-lived resonant encounters. At the time of the in-
terloper’s initial close approach with the binary, the cross sec-
tion is dominated by gravitational focusing, and thus the first
two curves in Figure 3 are well fit by power laws with slope of 1.
As the interactions continue, resonant encounters with multiple

close approaches are possible, and the cross section for small
values of r/a0 increases. Each successive, intermediate curve
approaches the final cross section by a smaller amount because
there are fewer encounters that last into the next time bin. A fit
of two contiguous power laws to the final curve yields a break at
r/a0 ¼ 0:0102 with slopes of 0.85 and 0.35 for the lower and
upper portions, respectively. These values are very close to those
obtained by earlier studies (Hut & Inagaki 1985; Sigurdsson &
Phinney 1993). There is, however, no reason for a preferred scale
for a Newtonian system, and simple models that assume close
approaches are dominated by pericenter passage after an ec-
centricity kick cannot explain the lower slope. We numerically
calculate d log �ð Þ/d log rð Þ by fitting multiple lines to � rð Þ in
logarithmic space and plot the results in Figure 4. The derivative
d log �ð Þ/d log rð Þ appears to approach unity for very small values
of r/a0, where the close approach can be thought of as a gravi-
tationally focused two-body encounter within the entire system
(Hut & Inagaki 1985). It is surprising that this does not happen
until r/a0 < 10�5.
In order to test the effects of gravitational radiation on the close

approach, aswell as to test the sensitivity of the results to the phase
of the binary, we ran the same simulationswith (1) gravitational ra-
diation, (2) gravitational radiation and first-order post-Newtonian
corrections, and (3) just first-order post-Newtonian corrections.
The three new cross sections are plotted with the Newtonian re-
sults in Figure 5. A Kolmogorov-Smirnov test shows the differ-
ences between the three curves to be statistically insignificant
(P � 0:4). Although not statistically significant, the curves with
gravitational radiation appear to drop below the Newtonian curve
for small r/a0 and then climb above for very small r/a0. Gravi-
tational radiation causes this effect by driving objects that become
very close to each other closer still and, in some cases, causing
them to merge. For larger masses, the gravitational radiation is
stronger, and the gravitational radiation curve will differ from the
Newtonian curve at larger r/a0 for a fixed value of a0.

Fig. 3.—Cross section for close approach during binary-single encounters as
a function of rmin /a0. The thick upper curve is the cross section for the entire
encounter. The remaining curves are the cross section at intermediate, equally
spaced times during the encounter starting from the bottom near the time of
initial close approach. Because we only include 20 intermediate curves, there is
a gap between the last intermediate curve and the final curve. The first two
curves have a slope of 1, consistent with close approach dominated by gravi-
tational focusing. As the encounters progress, resonant encounters with multiple
passes are more likely to have a close approach at smaller rmin/a0, and the curves
gradually evolve to the total cross section for the entire encounter.

Fig. 4.—Derivative of close-approach cross section curve for the entire en-
counter. Each symbol is the slope for a line segment fit to the top curve from
Fig. 3 plotted as a function of the midpoint of the range. Because of the small
number of encounters that result in very small close approaches, the multiple line
segments used in the fits cover different ranges in log r/a0ð Þ. Theywere selected so
that each of the 100 line segments covers an additional 1000 encounters that make
up the cumulative cross section curve. The scatter in the points is indicative of the
statistical uncertainty. For smaller close approaches, d log �ð Þ/d log rð Þ appears to
approach unity. The rise at the right occurs because the cross section is formally
infinite at rmin/a0 ¼ 1.
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3.1.2. Merger Cross Section

Themost interesting new consequence from adding the effects
of gravitational radiation to the three-body problem is the pos-
sibility of a merger between two objects. Although the two-body
cross section for mergers can be calculated from equation (8), the
dynamics of three-body systems increases this cross section in a
nontrivial manner. We present simulations of individual binary-
single encounters for a variety of masses. As in Paper I, the in-
teractions were set up in hyperbolic encounters with a relative
velocity at infinity of v1 ¼ 10 km s�1 with an impact parameter
distribution such that P(b) / b with bmin ¼ 0 and bmax such that
the maximum pericenter separation would be rp ¼ 5a. The bi-
naries were initially circular with semimajor axes ranging from
10�6 to 102 AU, depending on the mass. Themasses were picked
such that one of the three mass ratios was unity, with all masses
ranging from 10 to 103 M� with roughly half-logarithmic steps.
For each mass and semimajor axis combination, we run 104 en-
counters. We calculate the merger cross section as �m ¼ f �b2max,
where f is the fraction of encounters that resulted in a merger
while all three objects were interacting. In Figures 6–9we plot as
a function of the semimajor axis scaled to the gravitational radius
of the binary � � a/(Gmbin/c

2) the cross section normalized to
the physical cross section of the Schwarzschild radius of the mass
of the entire system taking gravitational focusing into account:

�̄m ¼ �m 4�
GMtot

v21

GMtot

c2

� ��1

: ð13Þ

For all mass ratios, �̄m increases with � because hard binaries with
wide separations sweep out larger targets where the interloper can
interact with and merge with the binary components. As � in-
creases to the point that the binary is no longer hard, �̄m will ap-
proach the value expected from equation (8). The curves flatten
out for �P100 as the cross section is dominated by the mergers of
binarymemberswith each other because of hardening interactions
and eccentricity kicks that bring the two masses together. For

sufficiently small �, themerger cross sectionwould be formally in-
finite since all binaries would merge quickly. For all mass series,
as the mass ratios approach unity, the cross section increases
because complicated resonant encounters, which produce more
numerous and smaller close approaches, are more likely when all
three objects are equally important dynamically.

We note some interesting trends that can be seen in the plots.
Note that for the scalings given, it is only the mass ratios that
matter and not the absolute mass so that the 10:10:10 and
1000:1000:1000 cases only differ because of statistical fluctua-
tions (Figs. 6 and 7). Thus, our results can be scaled to others; for
example, 1000:100:100 would be the same as 100:10:10. For the
10:10:Xmass series (Fig. 6), the normalized cross section decreases
with increasing interloper mass, roughly as �̄m � (m2/mbin)

�1.
This happens because as the interloper dominates the total mass of
the system, complicated resonant interactions with more chances
for close approach are less likely. Thus, for the 10:10:1000 case,
there are far fewer chances for a close approach that results in
merger. The 1000:1000:X series (Fig. 7) shows a distinct break

Fig. 5.—Cross section for close approach like Fig. 3 including different
orders of post-Newtonian corrections. The curves are purely Newtonian (solid
curve), Newtonian plus 2.5-order PN (dotted curve), Newtonian plus first-order
PN (dashed curve), and Newtonian plus first-order and 2.5-order PN (dash-
dotted curve). The purely Newtonian and the Newtonian plus 2.5-order PN
curves come from 105 encounters each. The other two curves come from 104

encounters each and showmore statistical fluctuations. The differences between
the curves are not statistically significant.

Fig. 6.—Normalized merger cross sections (eq. [13]) for individual binary-
single encounters as a function of � for the 10:10:X mass series. The normal-
ization is explained in the text. Each symbol represents 104 binary-single
encounters. Error bars given for the top curve are representative for all merger
cross section curves in Figs. 6–9.

Fig. 7.—Normalized merger cross sections like Fig. 6 for 1000:1000:X se-
ries. The error bars from Fig. 6 are representative for the curves in this figure.
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around � � 100. Since the binary mass is the same for all curves,
they all approach the same value for �P100 where the binary
members merge with each other because of their small separation.
For �k 100, the higher mass interlopers are dynamically more
important and cause more mergers. The X:10:10 series curves
(Fig. 8) all approach the 10:10:10 curve for �k105, where the
dominant object in the binary has less influence over its companion.

3.2. Sequences of Encounters

Because a tight binary in a dense stellar environment will
suffer repeated encounters until it merges from gravitational ra-
diation, we simulate a binary undergoing repeated interactions
through sequences of encounters including gravitational radia-
tion reaction. As in Paper I, we start with a circular binary with
initial semimajor axis a0 ¼ 10 AU and a primary of mass m0 ¼
10, 20, 30, 50, 100, 200, 300, 500, or 1000 M� and a secondary
of mass m1 ¼ 10 M�. We simulate encounters with interloping
black holes with mass m2 ¼ 10 M�. After each encounter, we
integrate equations (6) and (7) to get the initial semimajor axis
and eccentricity for the next encounter. This procedure continues
until the binary merges from gravitational radiation or there is a
merger during the encounter. Throughout our simulations we use

an encounter velocity of v1 ¼ 10 km s�1, an isotropic impact
parameter such that the hyperbolic pericenter would range from
rp ¼ 0 to 5a, and a black hole number density in the core n ¼
105 pc�3 (see Paper I for an explanation of these choices). For
each mass ratio we simulate 1000 sequences of encounters with
gravitational radiation reaction.
Our results are summarized in Table 1. The inclusion of grav-

itational waves during the encounter makes a significant differ-
ence from the results reported in Paper I. The fraction of sequences
that result in amerger during an encounter fm is a good indicator of
the importance of gravitational waves. Even for m0 ¼ 10 M�, a
significant fraction ( fm > 0:1) of the sequences merge this way,
and for m0 > 300 M� this type of merger is more likely to occur
than mergers between encounters, and thus this effect shortens the
sequence significantly. In particular, form0 ¼ 1000 M� compared
to the values from Paper I, the average number of encounters per
sequence nench i is decreased by 42%, the average number of black
holes ejected from the cluster nej


 �
is reduced by 56%, and the

average sequence length tseq

 �

is 67% shorter. One caveat for the
study of sequences of encounters is that an IMBH in a cluster of
much lower mass objects will gather a large number of compa-
nions in elongated orbits through binary disruptions, and thus the
picture of an isolated binary encountering individual black holes
may not holdwhen the IMBHbecomes verymassive (Pfahl 2005).

4. DISCUSSION

4.1. Implications for IMBH Formation and Growth

Our simulations provide a useful look into the merger history
of an IMBH or its progenitor in a dense stellar cluster. As an
IMBH grows through mergers with stellar-mass black holes, it
will progress through the different masses that we included in our
simulations of sequences. We interpolate the results in Table 1 to
calculate the time it takes to reach 1000M�, the number of clus-
ter black holes ejected while building up to 1000 M�, and the
probability of retaining the IMBH progenitor in the cluster for
different seed masses and escape velocities of the cluster.
The time to build up to 1000M� is dominated by tseq


 �
at high

masses. Although each individual sequence is short, far more
Fig. 9.—Normalized merger cross section like Fig. 6 for 1000:X:1000 series.

The error bars from Fig. 6 are representative for the curves in this figure.

TABLE 1

Sequence Statistics

m0

(M�) nench i nej

 �

fbinej

tseq

 �

(106 yr)

af

 �
(AU) ef


 �
fm

10.............. 46.4 3.2 0.652 54.10 0.174 0.904 0.134

20.............. 46.7 5.1 0.515 40.86 0.224 0.900 0.130

30.............. 52.4 7.3 0.457 29.47 0.290 0.898 0.156

50.............. 62.3 10.8 0.329 19.17 0.291 0.897 0.190

100............ 83.9 16.6 0.103 11.65 0.401 0.893 0.275

200............ 123.0 24.3 0.011 7.26 0.411 0.885 0.387

300............ 147.8 26.9 0.002 4.74 0.543 0.881 0.492

500............ 197.5 33.1 . . . 3.03 0.611 0.879 0.627

1000.......... 284.2 38.8 . . . 1.47 0.878 0.914 0.754

Notes.—Main results of simulations of sequences of encounters with grav-
itational radiation included during the encounter. The columns are: the mass of
the dominant black hole m0, the average number of encounters per sequence
nench i, the average number per sequence of stellar-mass black holes ejected
from a stellar cluster with escape velocity 50 km s�1 nej


 �
, the fraction of se-

quences in which the binary is ejected fbinej from a stellar cluster with escape
velocity 50 km s�1, the average time per sequence tseq


 �
, the average final

semimajor axis of the binaries after the last encounter af

 �

, the average final
eccentricity of the binaries after the last encounter ef


 �
, and the fraction of se-

quences that end with a merger during the encounter fm. Note that af

 �

and
ef

 �

only refer to the binaries that do not merge during the encounter; these
comprise 1� fm of the sequences.

Fig. 8.—Normalized merger cross section like Fig. 6 for X:10:10 series. The
error bars from Fig. 6 are representative for the curves in this figure.
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mergers are required for the same fractional growth in mass. In
Figure 10 we plot the mass of the IMBH as a function of time for
an initial mass ofm0 ¼ 10, 50, and 200M�, for which total times
to reach 1000 M� are 600, 400, and 250 Myr, respectively. Be-
cause we assume a constant core density throughout the simu-
lations, the times are unaffected by changing the cluster’s escape
velocity. Without gravitational radiation, the times are roughly
twice as long (Paper I) because the length of each sequence is
dominated by the time it spends between encounters at small a
when encounters are rarer. With gravitational radiation included,
mergers that occur during an encounter are more likely at small
separations, and the length of the sequence is shortened. These
times are much shorter than the age of the globular cluster and are
smaller than or comparable to timescales for ejection of black
holes from the cluster, which we discuss below (see also Portegies
Zwart &McMillan 2000; O’Leary et al. 2006). Thus, time is not a
limiting factor in reaching 1000M� for an IMBH progenitor that
can remain in a dense cluster with a sufficiently large population of
stellar-mass black holes.

Each time that an encounter tightens the binary, energy is
transferred to the interloper, which leaves with a higher velocity.
If energetic enough, this interaction will kick the interloper out of
the cluster. If the interactions kick all of the interacting black
holes out of the cluster, the IMBH cannot continue to grow. In a
dense cluster, there are roughly 103 black holes (Paper I). With
gravitational radiation included during the encounters, the num-
ber of black holes ejected is roughly halved (Fig. 11), but the
total number ejected while building up to 1000M� is still a few
times the number of black holes available even for an escape
velocity of vesc ¼ 70 km s�1. Thus, a black hole smaller than
m0P600 M� cannot reach 1000 M� by this method without
additional processes such as Kozai resonances (Gültekin et al.
[2004]; Miller & Hamilton [2002a]; Wen [2003]; although
O’Leary et al. [2006] find that Kozai-resonance induced mergers
will only increase the total number of mergers by�10%). There
is still the potential for significant growth in a short period of
time. If we consider the point at which half of the black holes
have been ejected from the cluster as the end of growth, then a

black hole with initial mass of 50 M� will grow to 290 M� in
120 Myr, and a black hole of 200M� will grow to 390M� in less
than 100Myr. In addition, this ejection of stellar-mass black holes
by a binary with a large black hole is faster than by self-ejection
from interactions among stellar-mass black holes calculated by
Portegies Zwart & McMillan (2000), who find that �90% of
black holes are ejected in a few Gyr. O’Leary et al. (2006), how-
ever, find that the inclusion of a mass spectrum of black holes
further speeds up the ejection of stellar-mass black holes.

For every kick imparted on an interloper, conservation of mo-
mentum ensures a kick on the binary. Even with a large black
hole, extremely large kicks can eject the binary from the cluster,
at which point the IMBH progenitor can no longer grow. We can
calculate the probability of IMBH retention for an individual
sequence as 1� fbinej, from which we interpolate the probability
of remaining in the cluster while growing to 300 M� when the
binary is essentially guaranteed to remain in the cluster. We plot
this probability as a function of seed mass for several different
escape velocities in Figure 12. The inclusion of gravitational
waves during the encounter increases the retention probability for
small masses. Form0 ¼ 50 M� the cluster retains the binarymore
than 12% of the time, and 49% of the time for m0 ¼ 100 M�.
Because the energy that an interloper can carry away from the sys-
tem scales as

�E � m1

m0 þ m1

EBj j ¼ m1

m0 þ m1

Gm0m1

2a
; ð14Þ

the encounters at the end of the sequence, when a is smallest, are
the most likely to impart a kick large enough to eject the binary
from the cluster. This is also the point at which effects from grav-
itational radiation are strongest and at which close encounters are
most likely to cause a merger. When the encounter ends in a
merger, there can be no more ejections. The mergers from grav-
itational radiation decrease the number of ejections by decreasing

Fig. 10.—Mass of progenitor IMBH as a function of time as it grows through
mergers with 10M� black holes in a dense stellar cluster. Solid curves show re-
sults from this work, in which gravitational radiation is included, and dashed
curves show results from Paper I in which this effect is ignored. From bottom to
top the curves show the growth of black holes with initial massm0 ¼ 10, 50, and
200M�. The IMBH progenitors all reach 1000M� in less than 600 Myr, and the
inclusion of gravitational radiation significantly speeds up the growth of the
black hole.

Fig. 11.—Number of black holes ejected in building up to 1000 M� (solid
curves) and to 500 M� (dashed curves) as a function of seed mass for different
cluster core escape velocities, given in units of km s�1. The dotted line indicates
the expected number of black holes in a dense globular cluster. The dot-dashed
curve from Paper I shows the number of black holes ejected from the cluster in
building up to 1000 M� for a cluster escape velocity of 50 km s�1 without the
effects of gravitational waves during the encounter. For all but the largest seed
masses, the globular cluster does not contain enough black holes for the IMBH to
reach 1000M�. There are, however, a sufficient number of black holes to build up
to 500 M� for a seed mass greater than 225M� or an escape velocity of at least
60 km s�1. The inclusion of gravitational radiation during the encounter roughly
halves the number of ejections.
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the number of encounters and thus the number of possible ejec-
tions as well as cutting off what would otherwise be the end of the
sequence, in which ejections are more likely to occur.

Our analysis of the ejection of stellar-mass black holes as well
as of IMBH progenitors does not include the effects of gravita-
tional radiation recoil. As two objects with unequal masses or
with misaligned spins spiral in toward each other, asymmetric
emission of gravitational radiation produces a recoil velocity on
the center of mass of the binary. Most of the recoil comes from

contributions after the masses are inside of the ISCO, where
post-Newtonian analysis becomes difficult (Favata et al. 2004).
For nonspinning black holes, the velocity kick from the recoil up
to the ISCO is

vr ¼ 15:6 km s�1 f (q)

fmax

ð15Þ

(Favata et al. 2004), where q ¼ m1/m0 < 1; f (q) ¼ q2(1� q)/
(1þ q)5, and fmax � f (0:38) ¼ 0:018. Favata et al. (2004)
bounded the total recoil to between 20 km s�1 � vr � 200 km
s�1 for nonspinning black holes with q ¼ 0:127. Since the recoil
velocity scales as q2 for qT1, this may be scaled to other mass
ratios. More recently, Blanchet et al. (2005) argued from high-
order post-Newtonian expansions that the kick speed for very
small mass ratios qT1 was vr/c ¼ 0:043q2, with an uncertainty
of roughly 20%. This is consistent with the results of Favata et al.
(2004), but as most of the recoil originates well inside the ISCO,
Blanchet et al. (2005) caution that numerical results may be re-
quired for definitive answers. In both cases, a seed mass of m0 ¼
150 M� merging with m1 ¼ 10 M� companions will produce a
recoil velocity vr P 50 km s�1. A seed mass greater than 150M�
will then avoid ejection from both dynamical interactions and
gravitational radiation recoil.

4.2. Implications for Gravitational Wave Detection

In addition to the likelihoods and rates of growth of black holes
in dense stellar systems, our simulations shed light on the gravi-
tational wave signals that come from the mergers of these black
holes. Making optimistic assumptions, O’Leary et al. (2006)
calculate upper limits for Advanced LIGO detection rates of all
black hole mergers in stellar clusters formed at a redshift z ¼ 7:8.

Fig. 12.—Probability for a binary with an IMBH to remain in the cluster until
building up to 300M� as a function of seed mass for different cluster core escape
velocities given in units of km s�1. Solid curves are results from thiswork, and the
dashed curve is from Paper I for an escape velocity of 50 km s�1. The inclusion of
gravitational radiation significantly increases the retention probability.

Fig. 13—Histogram of eccentricities of merging binary while in the LISA band ( fGW ¼ 2–10 mHz) out of a total of 1000 sequences. The histograms show a
combination of the binaries that merged after the last encounter with eccentricities concentrated around 0 < eP0:3 and the black holes that merged quickly during the
encounter with eccentricities very close to unity. The peaks in the rightmost bin in all plots lie above the range of the plots.
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For their wide range of cluster properties, they find detection rates
ranging from �LIGO � 0:6–10 yr�1. For cluster parameters that
most closely resemble those used in Paper I and in this work
(GMH model series), they find �LIGO � 2–4 yr�1. Our simu-
lations show that when gravitational radiation is included in the
integration the number of black holes ejected per merger de-
creases for all mass ratios.With fewer black holes ejected from the
cluster, the overall rate of black hole mergers increases. For the
10:10:10 case, the number of ejections per merger decreases by
�10%, and for the 1000:10:10 case the number decreases bymore
than a factor of 2, thus increasing the rates found byO’Leary et al.
(2006). The exact increase in rate is difficult to estimate because
the total number of mergers is dominated by mergers between
stellar-mass black holes, yet the most easily detected mergers
involve black holes with larger masses.

Because dynamical interactions strongly affect the eccentric-
ity of a binary and because the timescale for merger is a such a
strong function of eccentricity, binaries in a cluster tend to have
very high eccentricities after their last encounter (Paper I; O’Leary
et al. 2006).With the addition of gravitational radiation during the
encounter, we find that the merging binaries become more ec-
centric because a significant fraction of themergers ( fm in Table 1)
occur during the encounter. These mergers typically happen be-
tween two black holes that are not bound to each other until they
come close to each other and emit a significant amount of gravi-
tational radiation, after which the two black holes are in an ex-
tremely high eccentricity orbit (1� eP 10�3).

To see how these high eccentricities affect the detectability of
the gravitational wave signal, we integrate equations (6) and (7)
until the binaries are detectable by LISA and then Advanced
LIGO. For circular orbits, the frequency of gravitational wave
emission is twice the orbital frequency, but masses in eccentric

orbits emit at all harmonics: fGW ¼ n�/2�, where n is the har-
monic number and

� ¼ G m0 þ m1ð Þ
a3

� �1=2
; ð16Þ

with peak harmonic for e > 0:5 at approximately n ¼
2:16 1� eð Þ�3/2

(Farmer & Phinney 2003). We consider the
binary to be detectable by LISA when the peak harmonic fre-
quency is between 2 and 10 mHz. We plot the distribution of
eccentricities in Figure 13. The distributions are essentially a
combination of those from Figure 9 of Paper I and a sharp peak
near e ¼ 1, which comes from the mergers during the encounter.
The number in the sharp peak increases with mass as fm increases
such that for 1000:10:10 more than 75% of the merging binaries
detectable by LISA have an eccentricity greater than 0.9. Between
15% and 25% of all of the merging binaries have eccentricities so
high that the peak harmonic frequency is above the most sensitive
region of the LISA band, but they should still be emitting strongly
enough at other harmonics to be detectable. Such high eccentricity
presents challenges for the detection of these signals from the data
of space-based gravitational wave detectors because (1) it requires
a more computationally expensive template matching that in-
cludes noncircular binaries and (2) the binaries only emit a strong
amount of gravitational radiation during the short time near per-
iapse as they merge. For a given semimajor axis, these extremely
high eccentricities will also increase the gravitational wave flux
emitted and thus increase the distance out to which LISA can
detect them, but the detection ratemay be compensated by the fact
that more parameters are required (Will 2004). We also integrate
the orbital elements of the binaries until they are in the Advanced

Fig. 14—Histogram of eccentricities of merging binary while the gravitational wave frequency is detectable from current and future ground-based detectors. The
upper limit of the frequency range is the ISCO frequency. We used a lower limit for frequency range of 100 Hz for m0 ¼ 10 and 20 M�; 35 Hz for m0 ¼ 30, 50, and
100M�; and half the ISCO frequency for the higher mass binaries. The binaries are very close to circular once they are in the frequency range of ground-based detectors.
The peaks in the leftmost bin in all plots lie above the range of the plots.
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LIGO band (40 Hz < fGW < fISCO) or within a factor of 2 of their
ISCO frequency form0 > 100 M�. We find that they have almost
completely circularized (Fig. 14). A tiny fraction (<0.5%) of the
runs with m0 ¼ 500 and 1000 M� have merging binaries with
eccentricities such that 1� eP 10�6.

5. CONCLUSIONS

1. Gravitational radiation in N-body.—We present results of
numerical simulations of binary-single scattering events includ-
ing the effects of gravitational radiation during the encounter.We
include gravitational radiation by adding the 2.5-order post-
Newtonian force term (eq. [5]) to the equation of motion within
the HNDrag framework. The code reproduces the expected
semimajor axis and eccentricity evolution, and it gives the ex-
pected two-body capture radius.

2. Close approach and merger cross sections.—We use the
new code to test the effects of gravitational radiation on a standard
numerical experiment of binary-single encounters. We probe the
close-approach cross section to smaller separations than has been
simulated previously and find that the inclusion of gravitational
radiation makes little difference except for extremely close en-
counters (rp < 10�5a), at which point gravitational radiation
drives the objects closer together.We also present the cross section
for merger during binary-single scattering events for a variety of
mass ratios and semimajor axes.

3. IMBH growth in dense stellar clusters.—We simulate se-
quences of binary-single black hole encounters to test for the
effects of gravitational radiation and to test formation and growth

models for intermediate-mass black holes in stellar clusters. We
find that the inclusion of gravitational radiation speeds up the
growth of black holes by a factor of 2, increases the retention of
IMBH progenitors by a factor of 2, and decreases the ejection of
stellar-mass black holes by a factor of 2. All of these effects act to
enhance the prospects for IMBH growth.
4. Detectability of gravitational waves.—We analyzed the

merging binaries from the simulations of black holes in dense
stellar clusters to look at the detectability of the gravitational
wave signals from these sources. We find that the mergers that
occur rapidly during the encounter, as opposed to those that occur
after the final encounter, are an important source of black hole
mergers, becoming the dominant source of mergers at the higher
mass ratios. The mergers that do occur during the encounter tend
to have extremely high eccentricity (e > 0:9) while in the LISA
band, presenting challenges for their detection. When the gravi-
tational wave signal from the merging black holes is in the Ad-
vanced LIGO band, the orbit will have completely circularized.
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Flanagan, É. É., & Hughes, S. A. 1998a, Phys. Rev. D, 57, 4535
———. 1998b, Phys. Rev. D, 57, 4566
Fryer, C. L., & Kalogera, V. 2001, ApJ, 554, 548
Gebhardt, K., Rich, R. M., & Ho, L. C. 2002, ApJ, 578, L41
———. 2005, ApJ, 634, 1093
Gebhardt, K., et al. 2000, ApJ, 543, L5
Gerssen, J., van der Marel, R. P., Gebhardt, K., Guhathakurta, P., Peterson, R. C.,
& Pryor, C. 2002, AJ, 124, 3270

Gültekin, K., Miller, M. C., & Hamilton, D. P. 2004, ApJ, 616, 221 (Paper I )
Gürkan, M. A., Freitag, M., & Rasio, F. A. 2004, ApJ, 604, 632
Hopman, C., & Portegies Zwart, S. 2005, MNRAS, 363, L56
Hut, P., & Inagaki, S. 1985, ApJ, 298, 502

Itoh, Y., Futamase, T., & Asada, H. 2001, Phys. Rev. D, 63, 064038
Kaaret, P., Ward, M. J., & Zezas, A. 2004, MNRAS, 351, L83
King, A. R., Davies, M. B., Ward, M. J., Fabbiano, G., & Elvis, M. 2001, ApJ,
552, L109

Lee, M. H. 1993, ApJ, 418, 147
Martel, K., & Poisson, E. 1999, Phys. Rev. D, 60, 124008
Matsubayashi, T., Shinkai, H., & Ebisuzaki, T. 2004, ApJ, 614, 864
McCrady, N., Gilbert, A. M., & Graham, J. R. 2003, ApJ, 596, 240
Miller, J. M., Fabian, A. C., & Miller, M. C. 2004, ApJ, 614, L117
Miller, M. C. 2002, ApJ, 581, 438
Miller, M. C., & Colbert, E. J. M. 2004, Int. J. Mod. Phys. D, 13, 1
Miller, M. C., & Hamilton, D. P. 2002a, ApJ, 576, 894
———. 2002b, MNRAS, 330, 232
Newhall, X. X., Standish, E. M., & Williams, J. G. 1983, A&A, 125, 150
O’Leary, R. M., Rasio, F. A., Fregeau, J. M., Ivanova, N., & O’Shaugnessy, R.
2006, ApJ, 637, 937

Pakull, M. W., & Mirioni, L. 2001, in Astronomische Gesellschaft Meeting
Abstracts, 112

Peters, P. C. 1964, Phys. Rev., 136, 1224
Pfahl, E. 2005, ApJ, 626, 849
Portegies Zwart, S. F., Baumgardt, H., Hut, P., Makino, J., & McMillan, S. L.
W. 2004, Nature, 428, 724

Portegies Zwart, S. F., & McMillan, S. L. W. 2000, ApJ, 528, L17
———. 2002, ApJ, 576, 899
Quinlan, G. D., & Shapiro, S. L. 1989, ApJ, 343, 725
Ruszkowski, M., & Begelman, M. C. 2003, ApJ, 586, 384
Schilling, R. 1998, in AIP Conf. Proc. 456, Laser Interferometer Space Antenna,
Second International LISA Symposium on the Detection and Observation of
Gravitational Waves in Space, ed. W. Folkner (New York: AIP), 217

Sigurdsson, S., & Phinney, E. S. 1993, ApJ, 415, 631
Strohmayer, T. E., & Mushotzky, R. F. 2003, ApJ, 586, L61
Wen, L. 2003, ApJ, 598, 419
Will, C. M. 2004, ApJ, 611, 1080

GÜLTEKIN, MILLER, & HAMILTON166


