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ABSTRACT

Massive black holes have been discovered in all closely examined galaxies with high velocity dispersion. The case
is not as clear for lower-dispersion systems such as low-mass galaxies and globular clusters. Here we suggest that
above a critical velocity dispersion ∼40 km s−1, massive central black holes will form in relaxed stellar systems
at any cosmic epoch. This is because above this dispersion primordial binaries cannot support the system against
deep core collapse. If, as previous simulations show, the black holes formed in the cluster settle to produce a dense
subcluster, then given the extremely high densities reached during core collapse the holes will merge with each
other. For low velocity dispersions and hence low cluster escape speeds, mergers will typically kick out all or all but
one of the holes due to three-body kicks or the asymmetric emission of gravitational radiation. If one hole remains,
it will tidally disrupt stars at a high rate. If none remain, one is formed after runaway collisions between stars, and
then it tidally disrupts stars at a high rate. The accretion rate after disruption is many orders of magnitude above
Eddington. If, as several studies suggest, the hole can accept matter at that rate because the generated radiation is
trapped and advected, then it will grow quickly and form a massive central black hole.

Key words: accretion, accretion disks – binaries: general – black hole physics – galaxies: bulges – galaxies:
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1. INTRODUCTION

Observations over the last two decades have revealed central
massive black holes in all sufficiently well observed massive
galaxies (e.g., Gültekin et al. 2011). However, the case is not as
clear for lower-mass galaxies or globular clusters, and indeed
although there is evidence for black holes in some low-mass
galaxies (Greene et al. 2010; Kuo et al. 2011), there are examples
of galaxies that clearly do not have black holes that follow the
standard mass–velocity dispersion (M–σ ) relation (Merritt et al.
2001; Gebhardt et al. 2001), and the case for globular clusters is
far from clear (e.g., Gerssen et al. 2002; McNamara et al. 2003;
Baumgardt et al. 2003; Strader et al. 2012).

Here we approach this question by focusing on the velocity
dispersion rather than the mass of a stellar system. In Section 2
we show that above a critical velocity dispersion σcrit ∼
40 km s−1, the total binding energy in primordial binaries that
can be tapped in three- and four-body interactions is significantly
less than the total binding energy of the system as a whole,
and hence if such systems are dynamically relaxed, they will
undergo deep core collapse essentially unhindered by dynamical
heating from binaries (thus leading to one of the scenarios
discussed by Begelman & Rees 1978 in the context of more
massive clusters). We note that the galaxies seen thus far
without massive black holes have velocity dispersions below
this limit (e.g., NGC 205 has σ = 39 km s−1 and M33 has
σ = 24 km s−1; see Gültekin et al. 2009 and references
therein). In Section 3 we discuss the evolution of binary-free
systems. Previous studies have demonstrated that the black
holes in such systems sink rapidly to the center and interact
mostly with each other in a dense subcluster. This leads to three
paths, all of which culminate in the formation of a massive
black hole: (1) For sufficiently high escape speed systems
dynamical interactions result in runaway merging of the black
holes into a massive hole. For lower escape speed systems either
one or zero black holes remain after ejection of merged pairs
due to asymmetric emission of gravitational radiation during

coalescence or Newtonian recoil from interactions of black holes
with dynamically formed binaries. (2) If one black hole remains,
then it tidally disrupts ordinary stars and consumes the remnant
disks quickly, hence growing rapidly into a massive black hole;
other growth mechanisms, such as the accretion of nascent gas
or winds, are insignificant. (3) If no black holes remain, then
runaway collisions form a massive star that evolves into a black
hole, and this first black hole grows via accumulation of tidally
disrupted stars. Thus, once binary support is removed, massive
black hole formation is assured as long as holes consume tidal
remnants quickly. In Section 4, we determine the minimum
mass of a black hole formed via these paths and discuss the
implications of this scenario.

2. VELOCITY DISPERSION THRESHOLD FOR
DEEP CORE COLLAPSE

Stellar systems that are in virial equilibrium evolve via two-
body interactions over their relaxation time, which for a star of
mass m in a system of velocity dispersion σ at a location with
an average stellar-mass density ρ is

trlx ≈ 0.3

ln Λ
σ 3

G2ρm
(1)

(Spitzer 1987), where ln Λ ∼ 5–10 is the Coulomb logarithm.
The evolution of an isolated stellar system is toward a greater
concentration of stars in the center balanced by a greater
expansion of the cluster on the outskirts; there is a productive
analogy with thermodynamics in which this behavior can
be seen as the gradual increase of cluster entropy (the greater
phase space accessed by the outer stars more than makes up for
the diminished phase space accessed by the stars in the core).
It was demonstrated several decades ago that if all the stars are
single (as opposed to being in binary or multiple systems), then
over a timescale that scales with the relaxation time at the half-
mass radius for a typical star (where the multiple is ∼15 for an
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initially Plummer sphere of equal-mass stars but is ∼0.2 if there
is a broad initial mass function; see Portegies Zwart & McMillan
2002), the core becomes so dense that it loses thermal contact
with the rest of the cluster and the core undergoes a collapse
such that the number density in the inner portions scales as
n ∼ r−2.2 (Lynden-Bell & Eggleton 1980; Cohn 1980). If we
take present-day nuclear star clusters as an example, then from
Figure 1 of Merritt (2009) we find that most have half-mass
relaxation times less than few × 1010 yr and thus are candidates
to collapse within a Hubble time if they had broad initial mass
functions and no central massive object to supply energy.

Binaries are the key to sustaining a cluster against this
collapse. When number densities become high enough that
binary–single interactions are common, such interactions can
harden the binary and hence inject energy into the cluster that
decreases its density. Many calculations (see, e.g., Hénon 1961;
Heggie 1975 for pioneering work) have shown that binaries that
are initially hard (meaning that their binding energy exceeds
the kinetic energy of a typical single star) tend to harden via
binary–single interactions, whereas initially soft binaries tend to
soften and eventually break up. Consistent with this expectation,
globular clusters have a significantly smaller binary fraction than
is seen in the field (e.g., Rubenstein & Bailyn 1997; Milone et al.
2012).

In principle, even a very small number of binaries could have
enough binding energy to hold off the collapse of a cluster.
Consider, for example, a reasonably rich globular cluster with
a velocity dispersion of 10 km s−1. A binary of two solar-mass
stars near contact, with an orbital radius of 0.01 AU, has ∼103

times the binding energy per mass that a single cluster star has
in kinetic energy, so if 0.1% of stars are in such binaries, the
energy to hold off cluster collapse appears to be present. White
dwarfs are 100 times smaller yet, so it might seem that if there
is one near-contact white dwarf binary in a cluster of 105 stars,
its binary interactions could successfully oppose core collapse.

This is of course not true, for two reasons. First, as the
semimajor axis of a binary shrinks, its close interactions with
single stars have a greater and greater chance of destroying
the single star or one of the binary stars; hence, the kinetic
energy of recoil is not shared with the cluster (Davies et al.
1994). As an example, a tight white dwarf binary cannot eject
a main-sequence star in this way. Second, even if a three-body
interaction is clean, a star that is thrown completely from the
cluster cannot share its kinetic energy with the cluster and the
only expansion of the core comes from the comparatively minor
effect that the core now has lost one star’s worth of mass.

The available binding energy from binaries is thus limited;
clusters having higher velocity dispersions have a more limited
available binding energy. As we now argue, this means that
above a velocity dispersion σcrit ∼ 40 km s−1, the binaries
cannot hold off core collapse. It should be noted that the velocity
dispersion of a cluster will evolve as a function of time, with
velocity dispersions being somewhat larger in the past when
the cluster was more massive (e.g., Giersz & Heggie 2009;
Küpper et al. 2010). The effect could be particularly enhanced
for clusters containing multiple stellar populations where a large
fraction of the first generation of stars are lost (D’Ercole et al.
2008). However, the velocity dispersion at later times will be
more relevant to the discussion in this paper, as this is when core
collapse may typically be possible (i.e., on timescales longer
than the half-mass relaxation time).

As a first estimate of the available binding energy for a binary
with initial semimajor axis a0, we assume that the eccentricity

distribution of binaries with a given semimajor axis is a thermal
distribution P (e < e0) = e2

0 truncated at the maximum
eccentricity emax allowed for pericenter distances greater than
some minimum rp,min (this could be the pericenter distance at
which stars collide), a(1 − emax) = rp,min for a semimajor axis
a. Thus, a fraction e2

max of orbits are allowed, and the binding
energy that can be released from semimajor axis a + da to a is
weighted by e2

max(a) = 1 − 2rp,min/a + (rp,min/a)2. Thus, the
total available binding energy from an initial semimajor axis a0
with stars of mass m is

Ebind,tot(a0) =
∫ a0

rp,min

Gm2

2a2
e2

max(a)da. (2)

This gives

Ebind,tot(a0) = Gm2

2rp,min

[
1

3
− rp,min

a0
+

(
rp,min

a0

)2

− 1

3

(
rp,min

a0

)3]
. (3)

For a0 > 10rp,min, Ebind,tot is roughly constant at Gm2/6rp,min,
whereas it decreases rapidly below 10rp,min, so for simplic-
ity we will approximate Ebind,tot as zero below 10rp,min and
Gm2/6rp,min above it.

Our next step is to note that for stars formed in a low-density
environment, there is roughly one binary per single star, and the
binary semimajor axes are approximately equally distributed
in ln a from 0.01 AU to ∼104 AU (Popova et al. 1982). In an
environment where binaries beyond a certain semimajor axis
are ionized by binary–single encounters, the fraction of binaries
will be decreased. For example, if we begin with six single stars
and six binaries and ionize the ones larger than 1 AU, we now
have fourteen single stars and two binaries. If as above we now
only concentrate on the binaries larger than 0.1 AU = 10rp,min,
this represents f ∼ 7% of the stars in the system. Thus, the
binary binding energy per all stars in the system is

ebin/star = f Gm2/(6rp,min). (4)

This is to be compared with the binding energy per star in the
cluster, which by the virial theorem equals the kinetic energy
per star in the cluster, or

ecluster/star = 1

2
mσ 2 (5)

for a velocity dispersion σ . The point at which ebin/star <
ecluster/star is the point at which core collapse is theoretically
possible. From the numbers above, if the single stars and the
binary components both have masses ≈1 M�, this happens when
σ ∼ 40 km s−1, meaning that interactions with binaries of
semimajor axis �0.5 AU have positive total energy and are thus
soft, and core collapse can proceed. If the initial distribution
of binary binding energies is extremely unusual, e.g., if most
stars are formed in binaries with semimajor axes less than
0.5 AU, then the supply of binary energy would be greater and
the threshold velocity dispersion could in principle be raised.
Barring such an unexpected distribution, however, the threshold
should be robust.

Indeed, work by Chernoff & Huang (1996) suggests that
there may be less binary energy available than we derive
above. They take into account that, rather than simply resetting
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the eccentricity of a binary, a binary–single encounter can be
resonant and hence for a given interaction there is a greater
chance to get to a very small separation. From their Figure 4 we
infer that for solar-type stars and σ = 40 km s−1 a typical energy
ΔE ≈ 6×1046 erg can be extracted from an initially hard binary,
whereas Equation (3) gives roughly an order of magnitude larger
energy. Thus, at σ = 40 km s−1, and perhaps at a slightly
lower velocity dispersion, the energy that can be extracted
from primordial binaries is significantly less than the binding
energy of the cluster; hence, such clusters can undergo core
collapse without being impeded significantly (three-body binary
formation and two-body tidal capture are also insignificant; see
Hut & Bahcall 1983 and Fabian et al. 1975, respectively).

3. PATHS TOWARD MASSIVE BLACK
HOLE FORMATION

We now evaluate the paths toward massive black hole forma-
tion that we mentioned in the introduction: runaway merging of
black holes, tidal disruption of stars by a single remaining black
hole, and formation of a new black hole from runaway collisions
of stars, followed by tidal disruption of stars by that black hole.
We first address the relevant timescales. In all three paths, the
overwhelmingly longest phase is the initial progression to core
collapse. To see this, note that the time to core collapse is a
multiple less than unity (∼0.2 for systems with a broad mass
distribution; see Portegies Zwart & McMillan 2002) of the re-
laxation time of the nuclear star cluster, which from Figure 1(a)
of Merritt (2009) is trlx ∼ 109 yr(M/106 M�) with a spread of
a factor ∼10. There is some evidence that nuclear star clus-
ters obey a similar M–σ relation to that seen for higher-mass
black holes. There is some observational evidence for this; e.g.,
Figure 2 from Ferrarese et al. (2006) indicates that nuclear star
clusters might have the same M–σ slope as has been found for
black holes (see Gültekin et al. 2009 for a recent discussion of
this relation) but offset so that the mass is a factor of ∼10 higher
than the black hole mass would be. If we loosely equate the
velocity dispersion of the cluster with that of the surrounding
bulge, this gives a cluster mass of

Mcl ≈ 106 M�(σ/40 km s−1)4 (6)

based on the scalings of Gültekin et al. (2009). Thus, clusters
with σ � 100 km s−1 have a chance to undergo core collapse
within a Hubble time. Figure 1 illustrates the paths we consider.

This step is necessary for all three paths we discuss. For a
collapsed core, the self-similarity arguments of Lynden-Bell &
Eggleton (1980) and the classic simulations of Cohn (1980)
show that if all the stars are treated as point masses and no
three-body binary formation is allowed, then the density of a
single-mass system evolves toward an n ∝ r−2.2 configuration.
This is quite close to a singular isothermal sphere n ∝ r−2;
hence, we will assume that the velocity dispersion is nearly
constant in the collapsed region. As a result, the relaxation time
scales roughly as ρ−1, so the evolution timescale is shorter by
orders of magnitude in the core of the cluster than it is in the
cluster as a whole.

As a result, once the core collapses, all three paths are traveled
in a time much shorter than the time to collapse. For example,
runaway mergers between black holes (or, in the third path,
runaway collisions between stars) occur roughly on the core
relaxation timescale because when the number density is not yet
sufficient for frequent mergers or collisions, further relaxation
will increase the density on the relaxation time until interactions

Figure 1. Paths toward massive black hole formation in a stellar cluster. At
velocity dispersions less than ∼40 km s−1, heating from binaries prevents full
core collapse. At velocity dispersions greater than ∼100 km s−1, a typical
nuclear star cluster will have too long a relaxation time for its core to collapse
in a Hubble time, although a massive black hole can form in other ways. At
intermediate velocity dispersions, full core collapse will occur and will likely
result in either zero or one remaining stellar-mass black hole. In the latter case,
the hole will grow via tidal disruption of stars; in the former, the stars will
undergo runaway collisions that produce a black hole, which will then grow via
tidal disruption of stars.

are frequent. Thus, the only limiting factor is the initial collapse
time. We also note that unlike in the scenario of runaway
collapse of young massive clusters proposed by Portegies Zwart
& McMillan (2002), the time window for runaway collisions of
stars to form a single black hole (in the third path) is not millions
of years, but billions of years. The reason is that when the cluster
is young enough that initially all stars are on the main sequence,
supernovae from the most massive stars begin at ∼2.5 Myr and
proceed for many stars, causing the core to lose a large amount
of mass to the ejecta and therefore expand and lower the number
density. In contrast, in our picture the evolution to core collapse
is much later, perhaps billions of years; hence, the remaining
stars are of low mass and thus only the collision product will
be massive enough to explode. Very little mass is lost, so the
density remains high.

In addition to the general core collapse, in a multimass system
there is considerable mass segregation. This means that the stars
in the core will tend to be toward the massive end, perhaps
∼1 M� after billions of years. In addition, of the objects likely
to be present after a long time, stellar-mass black holes will be
by a factor of a few to several the most massive. Many studies
(e.g., Mackey et al. 2008) have concluded that the black holes
then form a dense subcluster in which the holes interact mainly
with themselves. If, as in our scenario, there are no binaries, then
the holes can reach extremely high density in the center of the
subcluster and capture each other via emission of gravitational
radiation in initially hyperbolic two-body encounters. From
Quinlan & Shapiro (1989), the critical pericenter for a two-
body gravitational wave capture between two black holes with
a total mass M = m1 + m2 and a reduced mass μ = m1m2/M
is

rlrp,GW = 8.5 × 108 cm(M/20 M�)5/7

× (μ/5 M�)2/7(σ/40 km s−1)−4/7, (7)
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and hence their gravitationally focused cross section is

Σbh = 2πrpGM/σ 2 ≈ 9 × 1023 cm2(M/20 M�)12/7

× (μ/5 M�)2/7(σ/40 km s−1)−18/7. (8)

When two black holes capture each other in this way, their
inspiral is extremely rapid: from Peters (1964), the inspiral time
is

rla/(da/dt) = 5

64

c5a4(1 − e2)7/2

G3μM2(1 + 73e2/24 + 37e4/96)

≈ 105 yr(a/R�)4(1 − e2)7/2, (9)

where the approximation is for e ≈ 1 and our given number
assumes m1 = m2 = 10 M�. For a ≈ 1 R� = 7 × 1010 cm and
e > 0.99 (so that rp < rp,GW), the inspiral time is therefore less
than 0.1 years, and for a fixed rp the inspiral time scales as a1/2

so that even for an initial a = 100 AU the inspiral time is just a
few years.

When the holes do merge, they emit gravitational radiation
that is in general asymmetric, meaning that the remnant sin-
gle black hole will recoil relative to its original center of mass.
Studies of black hole recoil (Baker et al. 2007, 2008; Lousto
& Zlochower 2008, 2009; Lousto et al. 2010, 2012; van Meter
et al. 2010) show that although kicks from the coalescence of
nonspinning black holes are limited to <200 km s−1, rapidly
spinning black holes can produce remnants that travel at thou-
sands of kilometers per second relative to their original center
of mass. Thus, in this environment, unlike in the conditions that
may exist in the z > 10 universe (Davies et al. 2011), merg-
ers that are restricted to comparable-mass black holes are most
likely to lead to an ejection of the remnant.

As pointed out to us by S. Sigurdsson (2012, private com-
munication), for low velocity dispersions the ejection of black
holes is likely to be dominated by encounters with hard bina-
ries formed by the interaction of three initially hyperbolic black
holes. Hut (1985) finds that the rate of formation of “immortal”
binaries by this process (i.e., binaries that are not later softened
and ionized) is ṅ3B = 126G5m5n3/σ 9, where he assumes ob-
jects of identical mass m and σ is the three-dimensional velocity
dispersion. Thus, the ratio of the formation rate per volume of
these binaries to the rate of gravitational wave capture of black
holes by each other, assuming equal masses, is

ṅ3B

ṅBHBH
≈ 200(n/1010 pc−3)(m/10 M�)3(σ/40 km s−1)−52/9.

(10)

Thus, for low to moderate velocity dispersions and high number
densities, binary–single ejections are likely to dominate. The
result will be similar to the case in which only double black hole
mergers occur: there will either be zero or one hole left. For the
rest of this section we concentrate on ejections by mergers.

We set up a simple simulation of the evolution of a black
hole subcluster with no binaries. We assume that initially there
are either 100 or 101 black holes; note that even if all mergers
eject the remnant, having an odd number initially guarantees
that one will survive because with no binaries the interactions
are pairwise. The distribution of black hole masses is not well
established, and the distribution of their spins is even less so,
but as an illustrative example we draw the initial masses of
the black holes from the range [5, 30) M�, with a distribution

Figure 2. Fraction of clusters of a given velocity dispersion that retain a black
hole after a succession of mergers (upper left curves) and, if a black hole is
left, the median mass of the remaining black hole (lower right curves). For
this figure we ignore the effects of hard binaries formed by the interactions of
three initially hyperbolic black holes (see the text); hence, there is a difference
between cases with an initially even and an initially odd number of black holes.
The solid curves are for 100 initial black holes, and the dotted curves are for 101
initial black holes; the asymmetry in retained fraction at low velocity dispersions
is because if every black hole merger results in an ejection, an initially even
number will leave behind no black holes, whereas an initially odd number will
leave behind one. We assume an escape speed that is four times the velocity
dispersion. This figure demonstrates that retained runaway mergers leading to
massive seeds are only likely for velocity dispersions �200 km s−1.

dN/dM ∝ M−2, and the initial spins are drawn uniformly from
the range cJ/(GM2) = [0, 1).

We simulate the evolution of the cluster interaction by
interaction using the rejection method: we select two black holes
randomly, compute the cross section Σ of the interaction, divide
by the largest possible cross section Σmax (which is the cross
section of capture by the two most massive black holes in the
sample), and then compare that ratio with a uniform random
deviate x ∈ [0, 1). If x < Σ/Σmax, we accept the interaction;
otherwise, we draw again.

If the interaction is between two black holes, then we use
the recent Lousto et al. (2012) formula for the kick. If the
kick is greater than the escape speed vesc = 4σ (typical of a
core-collapsed cluster), we assume that the remnant has been
ejected from the cluster and thus remove both black holes from
the sample. Otherwise, we assume that the remnant remains;
hence, we sum the masses of the holes and estimate the spin of
the remnant following the prescription given in Rezzolla et al.
(2008).

Figure 2 shows the results. Here we plot the fraction of
clusters that retain a black hole after subcluster evolution, as
well as the median mass of the final black hole if one remains,
as a function of the velocity dispersion σ of the cluster. For
each velocity dispersion we performed 104 simulations. For low
escape speeds, almost all mergers between black holes eject the
remnant; hence, retention depends on whether the initial number
of holes is even or odd. As the escape speed increases, so does
the probability that a merger will not eject the remnant; for
vesc � 100 km s−1 it is most probable that this happens when the
spins of the holes are low and their masses are close to each other
(note from symmetry that there is zero recoil from the merger of
equal-mass nonspinning holes). As the escape speed increases
further, mergers between black holes of different masses can be
retained, until at vesc � 800 km s−1 a runaway occurs and a
single victorious black hole is usually the result.
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From these simulations we can argue that for clusters with
velocity dispersions �100 km s−1 a runaway is unlikely, but
that there is roughly an equal chance of leaving behind either
one or zero holes (depending largely on the parity of the initial
number until σ � 60 km s−1). When there is a black hole left
behind, it is likely for σ � 100 km s−1 to be at the low end of the
mass distribution (∼5 M�) because such black holes are initially
more common. In addition, lower-mass black holes have a lower
cross section for capture and hence an enhanced probability of
survival.

The subsequent evolution has the following two possibilities:
One black hole remains. Then, as we discuss in the next

section, the black hole will sit near the center of the high number
density distribution of stars. Tidal disruptions will add a few tens
of percent of the stellar mass to the hole, mostly within a few
weeks or less of the initial disruption, and hence the hole will
grow quickly. Given that interactions with the stars cannot eject
the hole from the cluster, it will become a massive black hole in
a short timescale.

No black holes remain. In this case, the stars will undergo
runaway collisions with themselves, leading to the production
of a massive star that will then become a black hole (e.g.,
Portegies Zwart & McMillan 2002). The situation then reduces
to the previous case because the time needed to produce a second
black hole, which could potentially eject the first, is significantly
larger than the time needed for the first hole to increase its mass
to the point that it can no longer be ejected.

We now discuss these possibilities in greater depth.

3.1. Interactions between Stars and a Black Hole

Although the central density after core collapse is formally
infinite, the finite number of stars means that this translates to
a few stars in a small region near the core. For example, if we
consider the inner ∼10 solar-type stars after core collapse and
continue to assume a constant velocity dispersion, then they are
in a region r = GM/σ 2 ∼ 5 AU(M/10 M�)(σ/40 km s−1)−2

in radius, with a resulting number density of n > 1014 pc−3.
Even the inner 1000 stars are in a region with n > 1010 pc−3, so
interactions will be common and rapid.

Stellar tidal disruption by black holes. A promising mech-
anism for such runaway growth is tidal disruption of stars by
stellar-mass black holes. The critical pericenter for tidal disrup-
tion of a star of mass m and radius R by a black hole of mass M
is

rp,tidal = (3M/m)1/3R . (11)

Thus, the gravitationally focused cross section for tidal disrup-
tion, assuming that the black hole mass greatly exceeds the
stellar mass, is

Σtidal ≈ 1026 cm2(M/10 M�)4/3(σ/40 km s−1)−2 (12)

for solar-type stars. This is roughly an order of magnitude greater
than the star–star collision cross section discussed later, and
two orders of magnitude larger than the black hole—black hole
capture cross section. Moreover, the rate is nonlinear in the mass
of the black hole (Σ ∝ M4/3). Thus, the conditions for a runaway
exist.

If tidal disruption does occur, then the mass will be force-fed
to the black hole at an extremely super-Eddington rate. Studies
suggest that fallback initially occurs over several times the
internal dynamical time of the disrupted star (Evans & Kochanek
1989), which is several hours for a solar-type star. The accretion
rate is therefore many millions of times the Eddington rate of a

stellar-mass black hole. Analyses of such supercritical accretion
(e.g., Maraschi et al. 1976; Begelman 1979; Jaroszynski et al.
1980; Popham et al. 1999; Ohsuga et al. 2005) indicate that the
matter will indeed flow into the hole at that rate, but that most of
the photon luminosity that is generated will be advected in with
the very optically thick matter (hence, although the accretion
rate is tremendously super-Eddington, the luminosity could be
limited to Eddington or slightly higher). Thus, it is expected that
within a matter of days, i.e., much shorter than any other relevant
timescale, most of the bound remainder of the star will flow onto
the hole. If this is the case, then the majority of the accretion
will finish without harassment from additional encounters by
stars. If, on the contrary, the accretion rate is actually limited to
the Eddington rate, then the time needed to accrete most of the
matter is much longer than the time to the next encounter, and
the disk might be disrupted, leading to negligible growth of the
hole.

The unbound remnant of the star will be thrown outward
at speeds comparable to the orbital speed at tidal disruption,
which is ∼800 km s−1 (M/10 M�)1/3 for a solar-type star. This
is much larger than the escape speed, so the wind will depart
ballistically unless it runs into many times its own mass in gas
in the cluster. However, given that the virial temperature of the
cluster is ∼105 K(σ/40 km s−1)2 and that cooling is extremely
efficient at that temperature, the total amount of gas in the cluster
at a given time will be small even though its escape speed is
sufficient to retain winds from red giants or (earlier, when more
massive stars existed) planetary nebulae. Thus, we assume that
the unbound gas simply escapes from the cluster. The ratio
of unbound gas to gas that accretes onto the black hole is
rather uncertain. The initial disruption leaves about half the mass
bound (Evans & Kochanek 1989), but shocks upon the return of
the bound matter might unbind additional mass. In a recent study
by Strubbe & Quataert (2009), they consider different ejection
fractions ranging from fesc = 0.5 (corresponding to negligible
return shocks) to fesc = 0.8 (corresponding to powerful return
shocks). In our scenario, the upshot is that because a single black
hole will grow, its growth will eject up to a few times its own
mass in stellar debris. Until this reaches at least hundreds, and
probably thousands, of solar masses, this will be such a small
fraction of even the core mass that we expect it to have a minor
effect on the dynamical evolution.

Star–star collisions. At the velocity dispersions we consider,
these collisions are likely to lead to mergers with little mass
loss because σ ∼ 40 km s−1 is much less than the escape
speed ∼600 km s−1 of a solar-type star. For the same reason,
these collisions are gravitationally focused, with a cross section
Σ = πr2

p(1 + 2GMtot/(rpσ
2)) ≈ 2π (GMtot/σ

2)rp for a peri-
center distance rp and a total mass between the stars of Mtot.
The relevant pericenter distance is the sum of the stellar radii,
which is 2 R� ≈ 0.01 AU for two solar-type stars; hence,
for two such stars Σ ≈ 1.5 × 1025 cm2(σ/40 km s−1)−2. The
characteristic time of interaction is then τ = 1/(nΣσ ) ≈
106 yr(n/1010 pc−3)−1(Mtot/2 M�)−1(σ/40 km s−1)−1. Note
that as a result even for the inner ∼103 stars the collision
time for solar-type stars is much less than their ∼3 × 107 yr
Kelvin–Helmholtz time, and hence the stars will not be able to
radiate their collisional energy before the next collision. How-
ever, because the velocity dispersion is <0.1 times the stellar
escape speed, the energy added is minor and most of the pres-
sure holding up the collision product stems from gravitational
contraction rather than either collision energy or nuclear energy;
these are thus not stars in the standard sense and need not have
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luminosities as high as those of main-sequence stars of the same
mass.

In addition, on the main sequence, stellar radii increase
with increasing mass; hence, the rate of interactions increases
more than linearly with increasing stellar mass. An additional
factor is that more massive stars tend to sit closer to the
center of the potential, where the number density of objects is
greater. The conditions are thus ripe for a runaway, and indeed
runaway merging of stars has been proposed as a mechanism
for the generation of supermassive stars that later evolve into
intermediate-mass black holes (Portegies Zwart & McMillan
2002; Freitag et al. 2006). It has been suggested that the high
wind rates expected for high-mass stars can severely limit the
growth of supermassive stars (Glebbeek et al. 2009). Note,
however, that these wind rates are based on extrapolations of
winds for main-sequence stars, and as indicated above, the
collision products will be substantially larger and less luminous
than main-sequence stars. Indeed, the collision products are
more likely to be a “bag of cores” than an actual star, where an
extended gaseous envelope engulfs an ensemble of stellar cores.

We do note that although Glebbeek et al. (2009) argue that
winds may prevent the formation of intermediate-mass black
holes, they find that runaway collisions produce stars massive
enough to evolve to normal stellar-mass black holes, at least.
Thus, for our purposes we assume that star–star collisions will
lead to black hole production.

The question is then whether the first black hole that forms
has enough time to consume many stars so that by the time
the next black hole forms, the first one is so massive that any
black-hole–black-hole merger will produce a weak recoil that
retains the remnant in the cluster. We argue that this is in fact
the case: the first black hole to form will be at the center of the
mass distribution, where the number density is the highest. If
this is, for example, in the region occupied by the inner ∼100
stars, then the number density is such that tidal disruptions of
stars by even a 10 M� black hole occur on average once per
few hundred years, and the interaction time scales as M−4/3.
Thus, the hole will double its mass every few thousand years,
i.e., in a time vastly shorter than the lifetime of even the most
massive stars. We note that although the segregation of the black
holes to the center of the cluster and their ejection lead to some
flattening of the stellar number density near the center of the
cluster (see, e.g., Aarseth 2012 and in particular his Figure 8
for a recent N-body simulation), we expect that when most of
the black holes have been ejected the stars near the core, which
have a very short relaxation time, will regrow the cusp. Hence,
the first black hole formed due to runaway stellar collisions will
be able to increase its mass by a large factor before any other
new-generation black hole forms.

3.2. Minimum Mass of Central Black Hole

We consider here the evolution of a cluster with a velocity
dispersion large enough to guarantee core collapse. If a black
hole grows in the cluster, what is a rough approximation to its
minimum mass? We will approach this question in two different
ways. First, we will determine the mass of a black hole nailed
to the center of an n ∝ r−2 core-collapse cluster such that
dynamical processes around the black hole can supply enough
heat to help forestall further core collapse. Second, we will apply
the criterion that the wander radius of the black hole must be less
than its radius of influence, under the assumption that otherwise
the number of stars bound to the black hole would be much less
and hence its heating influence would be reduced.

We will assume as before that the mass of the nuclear
star cluster is related to its velocity dispersion by Mcl ≈
106 M�(σ/40 km s−1)4. For a core-collapse cluster with n ∝
r−2, the velocity dispersion is the same at all radii and the
gravitational binding energy is Ebind = (1/2)Mclσ

2 from the
virial theorem.

This energy must be compared with the available energy
(as defined before) from dynamics around the central black
hole. The available energy per unit mass around the black hole
that we found previously is GMBH/(6rp,min), where rp,min is
the minimum pericenter distance of an orbit that can last long
enough for significant dynamical interactions. For a black hole,
the relevant time is the time for gravitational radiation to cause
the object to spiral in; this time scales as T ∼ (mM2

BH)−1r4
p,

roughly, so for a fixed T we have rp,min ∝ M
1/2
BH . We used rp,min ≈

0.01 AU for 10 M� (giving an inspiral time of a few million
years), so we will adopt rp,min = 0.1 AU(MBH/103 M�)1/2.

If the distribution of stars around the black hole is a steep
cusp, then the stellar mass in the radius of influence of the black
hole equals the mass of the black hole (this need not be true if
the density distribution has a core profile; see Equation (14) of
Lasota et al. 2011). When we compare the available dynamical
energy of the stars around the black hole with the binding energy
of the cluster, we find that

MBH � 500 M�(σ/40 km s−1)4 (13)

is required for the stars around the black hole to provide
sufficient energy to hold off collapse.

We can also approach this from a different angle. A finite-
mass black hole will not be nailed to the center of the cluster.
Instead, it will wander due to stochastic dynamical interactions.
If the wander radius is less than its radius of influence, then we
can suppose that it is near the center of the stellar distribution
where encounters are frequent, but if the wander radius is larger,
then this need not be the case and heating could be less efficient.
Thus, a different criterion is rwander < rinfl,BH. Suppose that
there is a nearly constant density core in the inner 10% of the
cluster; then the scale height of a species in a cluster is
inversely proportional to the square root of its mass (from energy
equipartition arguments), and hence for this system we expect

rwander ∼ rcl(〈m〉/MBH)1/2 . (14)

Here 〈m〉 is the average mass of a star. The cluster radius is
rcl = GMcl/σ

2, and the radius of influence of the black hole is
GMBH/σ 2; hence, the wander criterion is

0.1(GMcl/σ
2)(〈m〉/MBH)1/2 � GMBH/σ 2

MBH � (0.01M2
cl〈m〉)1/3 (15)

MBH � 2 × 103 M�(σ/40 km s−1)8/3,

where in the last line we assume 〈m〉 = 1 M�.
Recall that these are lower limits on the mass of the central

black hole. The mass could be considerably greater depending
on long-term accretion of stars or gas.

4. DISCUSSION AND CONCLUSIONS

We have discussed the evolution of a relaxed cluster that has
a velocity dispersion σ � 40 km s−1, which is large enough to
render binaries insignificant, but that does not initially contain
a massive central black hole. We argue that a massive hole will
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inevitably form if it can swallow tidal debris rapidly: interactions
in the black hole subcluster will leave either zero or one hole.
In the case of zero, a black hole will form from the product
of runaway stellar merging. In either case, the hole will feed
quickly from the remnants of the stars it tidally disrupts and
hence will grow until it has significant dynamical effects on the
cluster and thus slows its own growth. It is not guaranteed that
the holes will then follow the same M–σ relation that exists
for higher velocity dispersion systems. It is also not guaranteed
that clusters with lower velocity dispersions will not have black
holes, but it is possible that massive black hole formation is
prevented as long as binaries have a significant heating effect
(see Gill et al. 2008 for a numerical exploration of the heating
due to binaries or a massive central object).
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