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ABSTRACT

We have identified the presence of large-scale, low-frequency dynamo cycles in a long-duration, global,
magnetohydrodynamic (MHD) simulation of black hole accretion. Such cycles have previously been seen in
local shearing box simulations, but we discuss their evolution over 1500 inner disk orbits of a global π/4 disk
wedge spanning two orders of magnitude in radius and seven scale heights in elevation above/below the disk
midplane. The observed cycles manifest themselves as oscillations in azimuthal magnetic field occupying a region
that extends into a low-density corona several scale heights above the disk. The cycle frequencies are 10–20 times
lower than the local orbital frequency, making them potentially interesting sources of low-frequency variability when
scaled to real astrophysical systems. Furthermore, power spectra derived from the full time series reveal that the
cycles manifest themselves at discrete, narrowband frequencies that often share power across broad radial ranges. We
explore possible connections between these simulated cycles and observed low-frequency quasi-periodic oscillations
(LFQPOs) in galactic black hole binary systems, finding that dynamo cycles have the appropriate frequencies and
are located in a spatial region associated with X-ray emission in real systems. Derived observational proxies,
however, fail to feature peaks with rms amplitudes comparable to LFQPO observations, suggesting that further
theoretical work and more sophisticated simulations will be required to form a complete theory of dynamo-driven
LFQPOs. Nonetheless, this work clearly illustrates that global MHD dynamos exhibit quasi-periodic behavior on
timescales much longer than those derived from test particle considerations.
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1. INTRODUCTION

The standard physical model of black hole disk accretion
accounts for the transport of angular momentum through corre-
lations in magnetohydrodynamic (MHD) disk turbulence driven
by the magnetorotational instability (MRI; Balbus & Hawley
1991). While the linear behavior of this instability is analyt-
ically tractable and some analytic progress has been made in
evaluating its saturation behaviors (e.g., Latter et al. 2009;
Vishniac 2009; Pessah & Goodman 2009; Pessah 2010), nu-
merical studies are crucial for understanding the nonlinear evo-
lution of the MRI. Local (i.e., shearing box) simulations of
weakly magnetized accretion, first conducted by Hawley et al.
(1995), have been instrumental in facilitating numerical studies
of the MRI by permitting smaller domains and larger timesteps
at a given resolution than their global counterparts. Global
disk simulations, on the other hand, have been invaluable in
elucidating the macroscopic aspects of accretion since they
incorporate more natural boundary conditions and allow large-
scale conservation behaviors and development of radial struc-
ture. A crucial question is in what regimes do local simulations
serve as a true microcosm for global disk behaviors. If, for
example, large-scale magnetic structures are important in disk
coronae, as has been suggested by Blackman & Pessah (2009)
and Beckwith et al. (2009), one might worry that real accre-
tion disks are intrinsically non-local. Likewise, Sorathia et al.
(2010) have shown that global magnetic linkages are important
even though the evolution of fluid stresses in subdomains of a
global simulation are well represented by local simulations with
net magnetic flux. So while the character of MRI turbulence in
global simulations appears to be correctly captured by local
simulations that include stratification and net magnetic flux, it

remains unclear how behaviors involving the development of
large-scale field correlations will translate from one simulation
regime to the other.

We report in this paper on a long-duration global simulation of
black hole accretion that confirms the existence of an interesting
phenomenon that previously had only been seen in local disk
simulations. Specifically, we have detected prominent low-
frequency “dynamo cycles” in the azimuthal magnetic field
evolution of a simulated global accretion disk. Dynamo cycles
are commonly invoked as the explanation for the observed
22 year solar magnetic cycle (see, e.g., Parker 1955, Babcock
1961, Leighton 1969 or the review by Baliunas & Vaughan
1985). More directly relevant to our work, however, is the
fact that such cycles have appeared in many shearing box
simulations of accretion disks (Brandenburg et al. 1995; Stone
et al. 1996; Miller & Stone 2000; Turner 2004; Hirose et al.
2006; Johansen et al. 2009; Suzuki & Inutsuka 2009; Shi et al.
2010; Gressel 2010; Davis et al. 2010; Simon et al. 2011).
These simulated cycles are typically seen to have periods on
the order of tens of local orbital periods, with the exact number
varying somewhat with the details of the simulation (the vertical
domain, in particular, was a limiting factor in many of the
earliest simulations). As Shi et al. (2010), Gressel (2010), and
Davis et al. (2010) discuss, the generic “butterfly” pattern can
be attributed to the vertical rising of azimuthal field due to the
combined effects of dynamo action near the disk midplane and
the Parker instability at higher elevation. Until now, however,
such features have not been reported in global simulations.

In analogy to the results of local simulations, our global disk
simulation produces dynamo cycles with oscillation frequencies
that are 10 to 20 times lower than the local orbital frequencies
for a large range of radii. Furthermore, the radial extent of our
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simulation captures the sharing of dynamo power at peak fre-
quencies across relatively large radial ranges. As such, dynamo
cycles provide a tantalizing source of variability at frequencies
comparable to astronomically observed low-frequency quasi-
periodic oscillations (LFQPOs) in multiple galactic black hole
binary candidates.

We proceed with a discussion of our numerical model
(Section 2), followed by a detailed description of the result-
ing dynamo cycles (Section 3). We then compare our global
simulation to published local simulations and discuss broader
observational implications (Section 4), followed by our conclu-
sions (Section 5).

2. NUMERICAL MODEL

Our fully three-dimensional MHD simulation employs a
modified version of the publicly available ZEUS-MP (version 2)
code, described in Stone & Norman (1992a), Stone & Norman
(1992b), and Hayes et al. (2006). ZEUS-MP uses an Eulerian
finite difference scheme accurate to second order in space to
solve the equations of ideal compressible MHD,

Dρ

Dt
= −ρ∇ · v, (1)

ρ
Dv
Dt

= −∇P +
1

4π
(∇ × B) × B − ρ∇Φ, (2)

ρ
D

Dt

(
e

ρ

)
= −P∇ · v − Λ, (3)

∂B
∂t

= ∇ × (v × B), (4)

where
D

Dt
≡ ∂

∂t
+ v · ∇. (5)

We employ a gamma-law (γ = 5/3) gas equation of state.
Timesteps are set by the usual Courant condition, and a
protection routine prevents the density and pressure from
reaching artificially small and/or negative values. The only
adjustments we have made to the fundamental ZEUS-MP
algorithm involve this protection routine and, as described
below, the introduction of modified gravity and the gas cooling
function, Λ.

Gravity is modified in our simulation to emulate the rele-
vant effects of general relativity through a pseudo-Newtonian
potential (Paczynski & Wiita 1980) of the form

Φ = − GM

R − 2rg
, rg ≡ GM

c2
. (6)

This approach accurately captures for a Schwarzschild space-
time the position of the innermost stable circular orbit (ISCO)
at r = 6rg, the period of which is τISCO ≈ 61.6 GM/c3 in this
potential.

We initialize our computational grid using spherical coor-
dinates (R, θ, φ) that span R ∈ [4rg, 400rg], θ ∈ [0.05π,
0.95π ], φ ∈ [0, π/4). The grid is non-uniform, logarithmically
increasing in R with a maximum R resolution of ΔR = 0.025rg
at the inner edge of the grid. The zone aspect ratio is approx-
imately ΔR:RΔθ :RΔφ = 3:1:6 everywhere within seven scale
heights above/below the disk midplane (i.e., at θ = π/2), and
each scale height is resolved with 25 computational zones in
this region. Outside of this region, the θ resolution logarithmi-
cally increases outward. The total grid size is NR × Nθ × Nφ =

512×384×64 = 1.26×107 zones. Standard ZEUS-MP bound-
ary treatments are employed, with a restricted boundary condi-
tion that permits outflow only in the ±R directions. Reflecting
conditions are used near the coordinate pole in θ (as in De
Villiers & Hawley 2003, for example), and periodic conditions
are applied in φ.

The initial conditions correspond to a thin, axisymmetric disk
of constant midplane density and radially decreasing pressure:

ρ(R, θ ) = ρ0 exp

(
− cos2 θ

2(h/r)2 sin2 θ

)
, (7)

and

p(R, θ ) = GMR(h/r)2 sin2 θ

(R − 2rg)2
ρ(R, θ ), (8)

where ρ0 is the initial density in the disk midplane and h is
the effective scale height. The disk aspect ratio is initialized
to h/r = 0.05 everywhere, and a cooling function Λ is
implemented to maintain this aspect ratio with a cooling time
(τcool) that is related to the local orbital period (τorb) using an
approach similar to that described in Noble et al. (2009). The
exact form of the cooling function is Λ = f (e − etarg)/τcool,
where f = 0.5[(e − etarg)/|e − etarg| + 1] is a threshold function
that enables cooling only when the internal energy e is greater
than the target energy etarg (and which is equal to zero when
etarg > e). The target energy is chosen so that etarg ∝ ρv2

φ(h/r)2,
which comes from the assumption that cs ∼ (h/r)vφ in thin
disks. Estimating the cooling time as the thermal timescale of the
disk, we choose τcool = τorb/α = 10τorb, which corresponds to
a Shakura & Sunyaev (1973) alpha disk with α = 0.1. While the
true effective alpha parameter varies spatially and in time over
the evolution of an MHD disk, this choice provides an adequate
order-of-magnitude estimate for the implementation of cooling.
Additionally, we ran a short test simulation that revealed that
the frequency range of the dynamo cycle signal discussed in the
following section was insensitive to the presence or absence of
cooling, although the signal itself was more pronounced in the
case with cooling.

The initial velocity profile is entirely azimuthal and is set such
that the effective centrifugal force balances the gravity of the
central object in the disk midplane. The initial magnetic field
is completely poloidal in orientation and consists of a series
of magnetic field loops that span several local scale heights
in both height and width (e.g., see Reynolds & Miller 2009).
The average ratio of gas-to-magnetic pressure is initialized to
β ≈ 1000.

3. RESULTS

The following analysis treats the disk only after it has relaxed
away from its initial conditions. Specifically, we allow the disk to
evolve for 150 ISCO orbits (>9200 GM/c3) and define t = 0 to
correspond to the end of this initialization period. The simulation
is then followed post-initialization for more than 1500 ISCO
orbits, from t = 0 to t ≈ 9.8×104 GM/c3. During and after the
initialization, the disk naturally evolves to a turbulent state as
a result of the MRI. Deferring a detailed discussion of the full
disk evolution to a future work, we focus here on an interesting
set of coherent behaviors that emerge from this turbulence.

3.1. Azimuthal Magnetic Field Oscillations

Figure 1 shows the azimuthal field strength (also azimuthally
averaged) as a function of both time and elevation from the
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Figure 1. Spacetime evolution of azimuthal magnetic field at R = 15rg (left), 20rg (center), and 25rg (right). The field has been averaged only in the azimuthal
direction. Bright (yellow) regions indicate strong, positive fields while dark (violet) regions are strongly negative. The disk midplane is located at θ = π/2 and
Δθ = 0.05 is one scale height. Time is shown both in units of GM/c3 and in terms of the local orbital period, τorb. These “butterfly diagrams” illustrate that the
azimuthal field changes sign over timescales on the order of ten times the local orbital period.

(A color version of this figure is available in the online journal.)

Figure 2. Frequency-weighted PSDs (νP , in arbitrary units) of azimuthal magnetic field strength taken over the duration of the simulation at R = 15rg (left), 20rg
(center), and 25rg (right), measured at two scale heights above the disk midplane and averaged both azimuthally and over a radial domain comparable to a scale height.
Each radius features strong, multi-peaked signals corresponding to the oscillations seen in Figure 1.

midplane for three distinct radii. At all radii, the disk midplane
is located at θ = π/2, while Δθ = 0.05 corresponds to one
scale height for fixed h/r . Each panel of the figure shows that
the azimuthal field at a given location reverses sign multiple
times. This variation can be seen for several scale heights above
and below the disk midplane, forming a “butterfly” pattern
analogous to that which has been observed in shearing box
simulations of accretion disks. The period of field reversal is
generally longer for larger distances from the central object,
although there are also some common features seen at all radii.
While it is difficult to tell from these diagrams whether the
variability is truly periodic, it appears that the reversals in field
orientation take place on timescales on the order of tens of
local orbital periods. Near the maxima of the field cycles, the
azimuthal field strength can be twice as strong as the rms value
of the azimuthal field measured over the simulation duration in
the same region.

To explore this variability in more detail, we show in Figure 2
the power spectral density (PSD), defined as P (ν) = η|f̄ (ν)|2,
where η is a normalization constant and f̄ (ν) is the Fourier
transform

f̄ (ν) =
∫

f (t)e−2π iνtdt, (9)

of a time series f (t). In each panel, the azimuthal magnetic
field has been azimuthally averaged and summed over a radial
range comparable to the local scale height before the PSD
is computed for a location two scale heights above the disk
midplane. In this case, the time series is taken to be the duration

of the simulation after initialization. All three panels show strong
power enhancements at frequencies roughly comparable to ten
to twenty local orbital periods (i.e., 0.05–0.1νorb, where νorb is
the local orbital frequency). It is interesting to note that all radii
also show multiple peaks, suggesting that the phenomenon is
not always simply related to the local orbital period. In fact,
there is some overlap between adjacent radii, as seen in the
shared frequency of the strongest peaks for both R = 15rg and
R = 20rg.

As a coarse estimate of the significance of these peaks, we
can compare their strengths to the mean power as estimated
from nearby frequencies. For a PSD of a single time series,
the mean is comparable to the standard deviation of the power
distribution (e.g., Press et al. 1992), implying that the ratio of
peak-to-mean power can be used to estimate peak significance.
In the case of R = 15rg, for example, the two highest peaks
are approximately 15–20 times the mean power as extrapolated
from nearby frequency ranges. The case of R = 20rg is even
more convincing as the primary peak is approximately 90 times
stronger than the mean while the secondary peak is roughly
40 times above the mean. Even if our approximations somehow
underestimate the mean power by factors of a few, each radius
features multiple peaks that stand significantly above the noise.

To further evaluate the significance of these features, we also
construct the average power spectral density (PSD), defined as
P (ν) = (1/N )

∑N
i=1 Pi(ν) over a set of N independent time

series fi(t). This approach has the advantage of reducing the
standard deviation of the PSD features at the expense of the
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Figure 3. Frequency-weighted PSDs (νP , in arbitrary units) of azimuthal magnetic field strength as in Figure 2, but constructed from averages over four independent
time series. Each radius features strong signals suggesting that the oscillations seen in Figures 1 and 2 are robust.

Figure 4. PSD (P, in arbitrary units) of azimuthal field strength over a range of
radii, as measured at two scale heights above the disk midplane and averaged
azimuthally. Also shown as a dashed line is the local orbital frequency. That the
dark (red) band of enhanced power runs parallel to the dashed line demonstrates
that the range of oscillation frequencies is roughly proportional to the local
orbital frequency. A given power peak, however, can often be seen to stretch
across a large radial range.

(A color version of this figure is available in the online journal.)

available frequency domain and resolution (see, e.g., van der
Klis 1989; Press et al. 1992; Vaughan et al. 2003). Given the
frequencies of interest and the total duration of the simulation,
we can afford to take only N = 4 independent time series,
which increases the significance of the averaged PSD by a fac-
tor of two over the unaveraged case. Figure 3 shows the PSDs
of the azimuthal magnetic field over the same regions depicted
in Figure 2. As in Figure 2, we see peaks (now broadened, but at
higher significance) that sit approximately ten to twenty times
below the local orbital period. While the peaks are sufficiently
broad that they overlap for different radii, the frequency resolu-
tion of the PSD is insufficient to determine how significant this
overlap is.

Figure 4 shows the PSD of the azimuthal magnetic field as
a function of both frequency and radius, so that we are better
able to evaluate the radial dependence of the power profile. As
in Figure 2, the PSD has been computed over the entire time
series. The vertical features in Figure 4 illustrate that power
is shared at distinct frequencies across large radial intervals,
with single peaks often stretching across radial ranges of 10rg
or more. Taken in aggregate, however, the power distribution
reflects the radial run of the orbital frequency. Specifically, the
power is bounded by ∼νorb/6 on the high-frequency end and
∼νorb/30 on the low. So even though a given power peak may

radially span multiple orbital frequencies, the range of peak
frequencies remains approximately proportional to the local
orbital frequency. This pattern only stands out clearly from the
noise for R � 10rg. Inward of this region, the broadband noise
associated with accretion across the ISCO masks any obvious
trend.

To further elucidate the nature of this variability, Figure 5
presents analyses of the azimuthal field at R = 20rg after various
cuts and segregations have been imposed. In the left panel of
Figure 5, we show the PSDs for this region when it is divided
into two independent time series (T1 represents the first half of
the simulation, T2 the second), each of which is approximately
5 × 104 GM/c3 in duration. Note that the peaks are not constant
in frequency, suggesting that the multiple peaks in Figures 2–4
are at least partly caused by frequencies migrating in time. It
is tempting to claim that the peaks move from higher to lower
frequencies over time, but it is challenging in practice to follow
individual peaks without a much longer time baseline.

The middle panel of Figure 5 shows the PSD for the full
time series, now comparing the regions above and below the
midplane. These peaks, too, fail to perfectly align even though
the disk starts from an approximately symmetric state. This is
perhaps not surprising given that features in the disk turbulence
are also seen to evolve asymmetrically about the midplane.
That said, this top–bottom asymmetry suggests that the exact
frequency of a single field oscillation may be less useful as
a diagnostic tool than the range of frequencies observed. The
rightmost panel of Figure 5 compares the PSDs for regions three
and four scale heights above the disk midplane. The similarity of
these peaks to one another and to the locations (if not the relative
amplitudes) of the analogous peaks in Figure 2 suggests that,
as expected, the variability on a given side of the disk features
similar frequencies at different heights from the disk midplane.

3.2. Observational Proxies

Thus far, we have focused only on the behavior of the
azimuthal magnetic field. We would also like to explore whether
any derived quantities and/or observational proxies oscillate in a
similar manner. Figure 6 shows PSDs of three derived quantities:
the integrated R − φ stresses

WR,φ =
∫

(ρvRvφ − BRBφ/4π )dV, (10)

the integrated Ohmic dissipation

POhm =
∫

(∇ × B)2

σ
dV (11)
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Figure 5. Frequency-weighted PSDs (νP , in arbitrary units) of azimuthal magnetic field strength measured at R = 20rg. The left panel illustrates the time variation
of the signal by comparing PSDs taken over two independent halves of the total simulation time (after startup). The middle panel shows PSDs corresponding to two
distinct regions (two scale heights) above and below the disk midplane. The right panel shows PSDs for three and four scale heights above the midplane, which are
similar in frequency to one another and to the signal at two scale heights.

(A color version of this figure is available in the online journal.)

Figure 6. Frequency-weighted PSDs (νP , where P is rms-normalized) of the total stresses (left), Ohmic dissipation (center), and accretion rate across the ISCO
(right). The stress and dissipation are integrated over a range that spans R = 15–25rg, stretching in elevation from the disk midplane to five scale heights above it. The
accretion rate is measured over a range that spans five scale heights above the midplane. While the integrated stress shows signs of the azimuthal field signals seen in
Figures 2 and 3, the dissipation and accretion rate are noise-dominated.

(where σ is assumed constant), and the mass accretion rate

Ṁ = −
∫

ISCO
ρvRdAR. (12)

Integration ranges are provided in the caption to Figure 6, and
the rms-normalized PSD for each quantity is computed over the
entire simulated time series. Of these three quantities, only the
total stresses feature oscillations that stand above the local noise
at frequencies comparable to those at which the azimuthal field
oscillates. This is not completely surprising since the dominant
Maxwell stresses depend upon the azimuthal field, but it is
nonetheless interesting that a quantity spatially integrated over
a large radial range, five scale heights, and the entire azimuthal
range of the grid still selects a set of distinct frequencies.
In contrast, both the Ohmic dissipation and accretion rate
are dominated by noise, particularly at low frequencies. In
practice, we would have to convincingly model and subtract
what appears to be a red (i.e., Brownian) noise spectrum in the
full data set to prove that any features in the full PSDs were
significant.

As was done in Figure 3, we also construct the PSDs for these
three observational proxies as averaged over four independent
time series to evaluate the significance of the peaks in Figure 6.
For each proxy, we see features near the frequencies of interest
(i.e., a few ×10−4 GM/c3), but they are in all cases comparable
(within approximately a factor of two) to the noise levels
in the nearby lowest frequency bins. This is in stark contrast
to the case of the azimuthal magnetic field (as seen in Figure 7),
where a clear signal stood above the noise in both the full
PSDs and the PSDs constructed from the subdivided series.

Without better frequency resolution from a longer simulation,
it is difficult to conclude that any peaks in the observational
proxies are present at high levels of significance.

4. DISCUSSION

4.1. Interpretation and Comparison with Local
Simulations of Accretion Disks

We propose that the magnetic field oscillations clearly seen
in Figures 1–5 are the manifestation of a dynamo cycle phe-
nomenon. As discussed in the introduction, such cycles have
been seen in local simulations of magnetized accretion that
reflect a large variety of numerical algorithms and disk parame-
ters. Our work has shown that similar cycles are indeed present
in global simulations of black hole accretion disks. As in the
local case, the azimuthal magnetic field cycles with frequencies
approximately ten to twenty times lower than the local orbital
frequency. Individual peaks in these cycles can share power
across large radial ranges, while the range of cycle frequen-
cies remains roughly proportional to the local orbital frequency.
Additionally, these features persist for the full duration of the
simulation (nearly 105GM/c3). This is much longer than the
time expected to erase all memory of the initial field conditions
(see Sorathia et al. 2010, for example) and is comparable to the
radial drift timescale at r = 10rg, suggesting that this behavior
can be maintained even over a period during which the disk
evolves significantly.

Linking the amplitudes and frequencies of the observed
dynamo cycles to the parameters of our global disk simulation
is, in practice, quite challenging. For example, Blackman
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Figure 7. Frequency-weighted PSDs (νP , where P is rms-normalized) of the total stresses (left), Ohmic dissipation (center), and accretion rate across the ISCO (right),
as in Figure 6 but averaged over four independent time series. While there are features in each panel near the frequencies of interest (i.e., a few ×10−4 c3/GM), these
features are not particularly well separated from the noise.

& Brandenburg (2002) illustrate with a series of numerical
experiments that the resulting dynamo cycle frequency depends
on the time evolution of the effective magnetic diffusivity. In
a grid-based simulation such as ours, this will generally vary
with both the grid resolution and flow details. Additionally,
our simulated disk does not maintain a perfect steady state.
For example, the surface density at a given radius can vary by
50% during the course of the simulation as accretion proceeds.
This variation is not necessarily monotonic, however, and is
accompanied by variation in both the accretion rate and effective
“alpha” parameter. It is therefore difficult to associate the
potential frequency drift seen in the first panel of Figure 5, for
example, with any obvious trend in the disk, although a longer
time baseline would potentially enable such an identification.
As such, we take a phenomenological approach to the observed
dynamo cycles and, having noted their similarity to a well-
established aspect of local simulations, now discuss how they
relate to astrophysical observables.

4.2. Relevance to Astrophysical Black Holes

The astronomical phenomena most obviously analogous to
our simulated dynamo cycles are the LFQPOs detected in
multiple black hole binary systems by X-ray satellites such as
Ginga and the Rossi X-Ray Timing Explorer. As summarized
in Remillard & McClintock (2006), LFQPOs appear in the
nonthermal X-ray spectrum and have frequencies that range
from 0.1 to 30 Hz. Although the peaks are often seen to migrate
quite rapidly in frequency, a given peak typically has a quality
factor (Q ≡ ν/Δν) � 10. Observed LFQPOs can also be very
strong, exhibiting rms amplitudes of tens of percents.

Our simulated dynamo cycles have three properties in com-
mon with observed LFQPOs. First, they occur in the expected
frequency range. To choose an example, an observed 4 Hz
LFQPO for a 10 M	 black hole corresponds to a frequency
in natural units of ν ∼ 2 × 10−4 c3/GM , which is representa-
tive of the range that we see in the simulations. Second, several
of the simulated dynamo cycle peaks have high quality factors.
In practice, the duration of our simulation permits a maximum
quality factor Qmax ≈ 5 at a frequency of 2 × 10−4 c3/GM , but
this value is achieved at multiple radii in Figure 2, for example.
Naturally, the quality factors of the peaks in the time-averaged
PSDs shown in Figure 3 are lower (specifically, of order unity)
as a result of the reduced frequency resolution available in this
mode of analysis and, potentially, the non-stationarity of the
time series. Third, the dynamo cycles are seen to occupy the
magnetized, low-density region that has been traditionally iden-
tified with the hard X-ray emitting corona (e.g., Miller & Stone

2000). Thus, there is no difficulty in linking dynamo cycles to
the region where we think observed LFQPOs originate. That
noted, we should point out that our simulation does not include
any treatment of realistic radiative processes. Neither do any
of our constructed observational proxies reflect the magnetic
field cycles with a high degree of significance nor do the prox-
ies feature rms amplitudes comparable to those seen in observed
systems. As such, we cannot make any detailed predictions con-
cerning how these dynamo cycles would manifest themselves
observationally.

Whatever the advantages and disadvantages of dynamo cycles
as a model for LFQPOs, it is worth briefly distinguishing them
from the most popular alternative models of LFQPO production.
First that dynamo cycles are most prominent in the azimuthal
magnetic field off the disk midplane shows that they have none
of the obvious characteristics of trapped waves (Kato 1990)
or diskoseismic modes (Nowak & Wagoner 1991, 1992, 1993;
Reynolds & Miller 2009; O’Neill et al. 2009), both of which
should manifest themselves in the hydrodynamic variables.
Lense–Thirring precession has been explored in the context of
LFQPOs by Ipser (1996) and Stella et al. (1999), for example, in
the test particle limit and on a more global scale by Ingram et al.
(2009), but our numerical model of a non-rotating black hole is
obviously incapable of producing such effects. (In fact, given
the observed dynamo cycles’ locations and nature, one expects
a similar outcome from a fully general relativistic simulation.)
The truncated disk model for LFQPOs proposed by Giannios
& Spruit (2004) is also quite distinct from ours since dynamo
cycles naturally produce oscillation frequencies much lower
than the local orbital frequency even at tens of gravitational radii,
requiring no disk cutoff. Finally, we note that dynamo cycles
are not simply a subtle manifestation of the Accretion–Ejection
Instability (AEI; Tagger & Pellat 1999) since the AEI occurs
near the inner edge of the disk while our cycles are seen to
originate from all radii that have had sufficiently many orbital
periods over which to evolve.

5. CONCLUSIONS

We have described a global, numerical, MHD study of
black hole accretion that has revealed an interesting pattern
of magnetic variability that, until now, had only been seen in
local shearing box simulations. The most important results of
our study are summarized here.

1. We have identified for the first time the presence of dynamo
cycles in global simulations of black hole accretion disks.
These cycles manifest themselves as oscillations in the
azimuthal magnetic field in a region that stretches from
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a few to several scale heights above the disk midplane
in elevation. Individual peaks in these cycles share power
radially, while their frequency range at a given radius is
found to be approximately ten to twenty times lower than
the local orbital frequency.

2. While dynamo cycles are easily seen in the azimuthal mag-
netic field, detecting cyclic variation in derived quantities
is much more challenging. The integrated stresses feature
variability that we have identified with the azimuthal field
behavior, reflecting the fact that distinct peaks in the PSD
are manifested by a wide range of radii. The mass accre-
tion rate and integrated Ohmic dissipation, however, remain
noise-dominated, and none of the three proxies we have
examined feature rms amplitudes as large as those seen
observationally.

3. We have discussed potential links between dynamo
cycles and observed LFQPOs in black hole binaries.
While dynamo cycles naturally produce oscillations at the
appropriate frequencies and locations expected for
LFQPOs, any complete theory of LFQPOs will need to
address how the field oscillations generate an observable
signature, how their periodicity varies in time, and, ulti-
mately, how low-frequency variability is connected to the
inferred black hole accretion state. Additionally, the du-
ration of our simulation limits our LFQPO peaks to have
quality factors Q � 5 when estimated from a single time
series. Such quality factors are still a factor of two below
what is observed, implying that direct comparisons of this
nature with observed LFQPOs will require extended simu-
lations that run for several thousand orbits (or longer, if one
wishes to average multiple PSDs together). Nonetheless,
our work shows that dynamo cycles in global simulations
can produce oscillations with frequencies much lower than
any natural frequency in the test particle regime.
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Stars, ed. H. Ögelman & E. P. J. van den Heuvel (New York: Kluwer), 27
Vaughan, S., Edelson, R., Warwick, R. S., & Uttley, P. 2003, MNRAS, 345,

1271
Vishniac, E. T. 2009, ApJ, 696, 1021

7

http://dx.doi.org/10.1086/147060
http://adsabs.harvard.edu/abs/1961ApJ...133..572B
http://adsabs.harvard.edu/abs/1961ApJ...133..572B
http://dx.doi.org/10.1086/170270
http://adsabs.harvard.edu/abs/1991ApJ...376..214B
http://adsabs.harvard.edu/abs/1991ApJ...376..214B
http://dx.doi.org/10.1146/annurev.aa.23.090185.002115
http://adsabs.harvard.edu/abs/1985ARA&A..23..379B
http://adsabs.harvard.edu/abs/1985ARA&A..23..379B
http://dx.doi.org/10.1088/0004-637X/707/1/428
http://adsabs.harvard.edu/abs/2009ApJ...707..428B
http://adsabs.harvard.edu/abs/2009ApJ...707..428B
http://dx.doi.org/10.1086/342705
http://adsabs.harvard.edu/abs/2002ApJ...579..359B
http://adsabs.harvard.edu/abs/2002ApJ...579..359B
http://dx.doi.org/10.1088/0004-637X/704/2/L113
http://adsabs.harvard.edu/abs/2009ApJ...704L.113B
http://adsabs.harvard.edu/abs/2009ApJ...704L.113B
http://dx.doi.org/10.1086/175831
http://adsabs.harvard.edu/abs/1995ApJ...446..741B
http://adsabs.harvard.edu/abs/1995ApJ...446..741B
http://dx.doi.org/10.1088/0004-637X/713/1/52
http://adsabs.harvard.edu/abs/2010ApJ...713...52D
http://adsabs.harvard.edu/abs/2010ApJ...713...52D
http://dx.doi.org/10.1086/375866
http://adsabs.harvard.edu/abs/2003ApJ...592.1060D
http://adsabs.harvard.edu/abs/2003ApJ...592.1060D
http://dx.doi.org/10.1051/0004-6361:200400043
http://adsabs.harvard.edu/abs/2004A&A...427..251G
http://adsabs.harvard.edu/abs/2004A&A...427..251G
http://adsabs.harvard.edu/abs/2010MNRAS.405...41G
http://adsabs.harvard.edu/abs/2010MNRAS.405...41G
http://dx.doi.org/10.1086/175311
http://adsabs.harvard.edu/abs/1995ApJ...440..742H
http://adsabs.harvard.edu/abs/1995ApJ...440..742H
http://dx.doi.org/10.1086/504594
http://adsabs.harvard.edu/abs/2006ApJS..165..188H
http://adsabs.harvard.edu/abs/2006ApJS..165..188H
http://dx.doi.org/10.1086/499153
http://adsabs.harvard.edu/abs/2006ApJ...640..901H
http://adsabs.harvard.edu/abs/2006ApJ...640..901H
http://adsabs.harvard.edu/abs/2009MNRAS.397L.101I
http://adsabs.harvard.edu/abs/2009MNRAS.397L.101I
http://dx.doi.org/10.1086/176832
http://adsabs.harvard.edu/abs/1996ApJ...458..508I
http://adsabs.harvard.edu/abs/1996ApJ...458..508I
http://dx.doi.org/10.1088/0004-637X/697/2/1269
http://adsabs.harvard.edu/abs/2009ApJ...697.1269J
http://adsabs.harvard.edu/abs/2009ApJ...697.1269J
http://adsabs.harvard.edu/abs/1990PASJ...42...99K
http://adsabs.harvard.edu/abs/1990PASJ...42...99K
http://dx.doi.org/10.1111/j.1365-2966.2009.14395.x
http://adsabs.harvard.edu/abs/2009MNRAS.394..715L
http://adsabs.harvard.edu/abs/2009MNRAS.394..715L
http://dx.doi.org/10.1086/149943
http://adsabs.harvard.edu/abs/1969ApJ...156....1L
http://adsabs.harvard.edu/abs/1969ApJ...156....1L
http://dx.doi.org/10.1086/308736
http://adsabs.harvard.edu/abs/2000ApJ...534..398M
http://adsabs.harvard.edu/abs/2000ApJ...534..398M
http://dx.doi.org/10.1088/0004-637X/692/1/411
http://adsabs.harvard.edu/abs/2009ApJ...692..411N
http://adsabs.harvard.edu/abs/2009ApJ...692..411N
http://dx.doi.org/10.1086/170465
http://adsabs.harvard.edu/abs/1991ApJ...378..656N
http://adsabs.harvard.edu/abs/1991ApJ...378..656N
http://dx.doi.org/10.1086/171538
http://adsabs.harvard.edu/abs/1992ApJ...393..697N
http://adsabs.harvard.edu/abs/1992ApJ...393..697N
http://dx.doi.org/10.1086/173381
http://adsabs.harvard.edu/abs/1993ApJ...418..187N
http://adsabs.harvard.edu/abs/1993ApJ...418..187N
http://dx.doi.org/10.1088/0004-637X/693/2/1100
http://adsabs.harvard.edu/abs/2009ApJ...693.1100O
http://adsabs.harvard.edu/abs/2009ApJ...693.1100O
http://adsabs.harvard.edu/abs/1980A&A....88...23P
http://adsabs.harvard.edu/abs/1980A&A....88...23P
http://dx.doi.org/10.1086/146087
http://adsabs.harvard.edu/abs/1955ApJ...122..293P
http://adsabs.harvard.edu/abs/1955ApJ...122..293P
http://dx.doi.org/10.1088/0004-637X/716/2/1012
http://adsabs.harvard.edu/abs/2010ApJ...716.1012P
http://adsabs.harvard.edu/abs/2010ApJ...716.1012P
http://dx.doi.org/10.1088/0004-637X/698/1/L72
http://adsabs.harvard.edu/abs/2009ApJ...698L..72P
http://adsabs.harvard.edu/abs/2009ApJ...698L..72P
http://dx.doi.org/10.1146/annurev.astro.44.051905.092532
http://adsabs.harvard.edu/abs/2006ARA&A..44...49R
http://adsabs.harvard.edu/abs/2006ARA&A..44...49R
http://dx.doi.org/10.1088/0004-637X/692/1/869
http://adsabs.harvard.edu/abs/2009ApJ...692..869R
http://adsabs.harvard.edu/abs/2009ApJ...692..869R
http://adsabs.harvard.edu/abs/1973A&A....24..337S
http://adsabs.harvard.edu/abs/1973A&A....24..337S
http://dx.doi.org/10.1088/0004-637X/708/2/1716
http://adsabs.harvard.edu/abs/2010ApJ...708.1716S
http://adsabs.harvard.edu/abs/2010ApJ...708.1716S
http://dx.doi.org/10.1088/0004-637X/730/2/94
http://adsabs.harvard.edu/abs/2011ApJ...730...94S
http://adsabs.harvard.edu/abs/2011ApJ...730...94S
http://dx.doi.org/10.1088/0004-637X/712/2/1241
http://adsabs.harvard.edu/abs/2010ApJ...712.1241S
http://adsabs.harvard.edu/abs/2010ApJ...712.1241S
http://dx.doi.org/10.1086/312291
http://adsabs.harvard.edu/abs/1999ApJ...524L..63S
http://adsabs.harvard.edu/abs/1999ApJ...524L..63S
http://dx.doi.org/10.1086/177280
http://adsabs.harvard.edu/abs/1996ApJ...463..656S
http://adsabs.harvard.edu/abs/1996ApJ...463..656S
http://dx.doi.org/10.1086/191680
http://adsabs.harvard.edu/abs/1992ApJS...80..753S
http://adsabs.harvard.edu/abs/1992ApJS...80..753S
http://dx.doi.org/10.1086/191681
http://adsabs.harvard.edu/abs/1992ApJS...80..791S
http://adsabs.harvard.edu/abs/1992ApJS...80..791S
http://dx.doi.org/10.1088/0004-637X/691/1/L49
http://adsabs.harvard.edu/abs/2009ApJ...691L..49S
http://adsabs.harvard.edu/abs/2009ApJ...691L..49S
http://adsabs.harvard.edu/abs/1999A&A...349.1003T
http://adsabs.harvard.edu/abs/1999A&A...349.1003T
http://dx.doi.org/10.1086/386545
http://adsabs.harvard.edu/abs/2004ApJ...605L..45T
http://adsabs.harvard.edu/abs/2004ApJ...605L..45T
http://adsabs.harvard.edu/abs/1989tns..conf...27V
http://dx.doi.org/10.1046/j.1365-2966.2003.07042.x
http://adsabs.harvard.edu/abs/2003MNRAS.345.1271V
http://adsabs.harvard.edu/abs/2003MNRAS.345.1271V
http://dx.doi.org/10.1088/0004-637X/696/1/1021
http://adsabs.harvard.edu/abs/2009ApJ...696.1021V
http://adsabs.harvard.edu/abs/2009ApJ...696.1021V

	1. INTRODUCTION
	2. NUMERICAL MODEL
	3. RESULTS
	3.1. Azimuthal Magnetic Field Oscillations
	3.2. Observational Proxies

	4. DISCUSSION
	4.1. Interpretation and Comparison with Local Simulations of Accretion Disks
	4.2. Relevance to Astrophysical Black Holes

	5. CONCLUSIONS
	REFERENCES

