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Gravitational wave and electromagnetic observations can provide new insights into the nature of matter
at supranuclear densities inside neutron stars. Improvements in electromagnetic and gravitational wave
sensing instruments continue to enhance the accuracy with which they can measure the masses, radii, and
tidal deformability of neutron stars. These better measurements place tighter constraints on the equation of
state of cold matter above nuclear density. In this article, we discuss a complementary approach to get
insights into the structure of neutron stars by providing a model prediction for nonlinear fundamental
eigenmodes (f modes) and their decay over time, which are thought to be induced by time-dependent tides
in neutron star binaries. Building on pioneering studies that relate the properties of f modes to the structure
of neutron stars, we systematically study this link in the nonperturbative regime using models that utilize
numerical relativity. Using a suite of fully relativistic numerical relativity simulations of oscillating
Tolman-Oppenheimer-Volkof stars, we establish blueprints for the numerical accuracy needed to accurately
compute the frequency and damping times of f-mode oscillations, which we expect to be a good guide for
the requirements in the binary case. We show that the resulting f-mode frequencies match established
results from linear perturbation theory, but the damping times within numerical errors depart from linear
predictions. This work lays the foundation for upcoming studies aimed at a comparison of theoretical
models of f-mode signatures in gravitational waves, and their uncertainties with actual gravitational wave
data, searching for neutron star binaries on highly eccentric orbits, and probing neutron star structure at
high densities.
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I. INTRODUCTION

Neutron stars [1] present unique opportunities to study
the nature of matter at supranuclear densities at relatively
low temperatures, and in the presence of extreme gravita-
tional interactions. Given the diverse scenarios that have
been invoked to describe the properties of cold, dense
matter in the cores of neutron stars (nucleons, hyperons, or
free quarks) [2–5], it is essential to confront these theories
with observations in the gravitational or electromagnetic
spectrum, or a combination of them through multimes-
senger astrophysics discovery campaigns [6,7]. These
studies will constrain the space of permissible models

and hopefully, gain a better understanding of the physics at
supranuclear densities. Electromagnetic observations of the
pulsars PSR J1614-2230 [8] and PSR 0348þ 0432 [9],
which are consistent with neutron stars with masses
M ∼ 2 M⊙, have already significantly reduced the existing
number of astrophysically viable equations of state (EOS),
PðϵÞ, i.e., the relation between the pressure P and the total
energy density ϵ. In [10] an upper limit for the neutron star
maximum mass of M ¼ 2.16 M⊙ was derived based on
GW170817 and basic arguments on kilonovas. A consis-
tent limit was derived from different considerations [11]
based on previous arguments about the nature of short
gamma-ray bursts [12–14].

PHYSICAL REVIEW D 99, 084024 (2019)

2470-0010=2019=99(8)=084024(13) 084024-1 © 2019 American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.99.084024&domain=pdf&date_stamp=2019-04-15
https://doi.org/10.1103/PhysRevD.99.084024
https://doi.org/10.1103/PhysRevD.99.084024
https://doi.org/10.1103/PhysRevD.99.084024
https://doi.org/10.1103/PhysRevD.99.084024


X-ray observations of the pulse profiles generated by hot
spots on moderately spinning neutron stars with the
ongoing NICER [15] and future enhanced X-ray Timing
and Polarimetry (eXTP) [16] missions may enable mea-
surements of the neutron star radii at the 5% level [17],
improving existing measurements that are dominated by
systematic errors [18,19]. This precision can be achieved
through long exposure times using NICER, or using the
polarimetry capabilities of eXTP.
LIGO [20,21] and Virgo [22] gravitational wave (GW)

observations of the neutron star merger GW170817
[6,7,23] imply that the two neutron stars had radii Rf1;2g ¼
11.9þ1.4

−1.4 km. Moreover, these measurements constrain the
dimensionless tidal deformability Λ̃ ≲ 800 [6]. Further-
more, following [24,25], one can express the logarithm of
the adiabatic index of the EOS ΓðP; γiÞ as a polynomial of
the pressure P (γi are the free EOS parameters). In this so-
called spectral parametrization, the adiabatic index is used
to compute the energy ϵðP; γiÞ and the rest-mass density
ρðP; γiÞ. Thereafter, these two latter quantities are inverted
to give the EOS. Finally, this parametrization is connected
to the SLy EOS [26] below half of the nuclear density.
Using this approach, and imposing a number of constraints
to ensure causality, internal, and observational consistency,
the study presented in [27] sampled directly the EOS
parameter space, and inferred that the pressure at twice
the nuclear saturation density of the GW170817 system is
measured to be Pð2ϵnucÞ ¼ 3.5þ2.7

−1.7 × 1034 dyn cm−2 quan-
tified at the 90% confidence level.
As a reference point, terrestrial laboratories can only test

and constrain cold EOSs at densities near or below
saturation density of nuclei ϵnuc. GW observations enable
these measurements because the waveform models used to
analyze LIGO and Virgo data encode information about the
static and dynamic tides that determine the dynamical
evolution of the system, driving it to merger faster than a
system of two point masses [28–31].
GW and electromagnetic observations will continue to

provide new and detailed information about the nature of
neutron star matter. GWobservations will shed light on the
masses and tidal deformability of neutron stars, while
electromagnetic observations will enable accurate measure-
ments of their mass and radius [15] and may even be
informative for studies of stellar structure in the context of
non-GR spacetimes [32].
Even though multimessenger observations will provide

new and detailed information about the properties of
neutron stars, they are likely to leave open questions,
especially in light of potential emission-model dependence,
which calls for independent and complementary measure-
ments. In this article, we will focus on a different
observational scenario to obtain this information from
direct observations of the stars, namely, the measurement
of fundamental eigenmodes (f modes) of the individual

stars, which can be caused by tidal effects, and for which
pressure is the restoring force.
Proposed scenarios for the generation of f modes in

neutron stars include neutron star binaries or neutron star–
black hole systems in highly eccentric orbits [33–39], i.e.,
binary separations comparable to the radii of the binary
components, such that violent changes in the tidal field can
perturb the stars without necessarily causing an immediate
collision [40–45]. These close interactions will induce
f-mode oscillations in cold, slowly rotating neutron stars,
thereby simplifying the analysis and modeling of f modes
as compared to the differentially rotating scenario [40] or
shock heated matter in hypermassive neutron stars [46–49].
Extracting physics encoded in the f modes from obser-

vational data involves an accurate model prediction [50,51],
and measurement of their frequencies ω and damping times
τ. Seminal studies have established that these two observ-
ables are related to the average density and compactness
[52–54]. In [55,56] universal relations using the effective
compactness η ¼ ðM=I3Þ1=2 with mass M and moment of
inertia I were discovered, and were tested in [57].
In principle, once ω and τ are extracted from GW

observations, it may be possible to infer M and I.
Furthermore, the amplitude of the f mode depends on
the orbital energy deposited in the mode, and this can be
used to measure the Love number λ and the rotationally
induced quadrupoleQ through I-Love-Q relations [58–61].
In this article, we carry out detailed analyses to quantify

the required accuracy in numerical relativity simulations to
extract the f-mode oscillations and damping times. To do
this, we simulate oscillating neutron stars using the open
source EINSTEIN TOOLKIT numerical relativity software, and
compare these results to linear perturbation theory (where
appropriate) similar in setup and spirit to [62], but with a
different focus. In addition to perturbations in the linear
regime we also explore perturbation amplitudes more akin
to those seen in highly eccentric neutron star binary tidal
interactions. This work lays the foundation for future
numerical relativity simulations of highly eccentric neutron
star mergers (see [63] for a state-of-the-art library) with the
aim of accurately extracting f-mode oscillation damping
times and frequencies as well as a systematic investigation
for a variety of equations of state and the effect of model
uncertainties on parameter estimation. A successful detec-
tion and accurate parameter estimation from eccentric
neutron star binaries would provide a wealth of information
on astrophysical evolution scenarios [64].
This article is organized as follows: Sec. II outlines the

approach we have followed to couple Einstein’s field
equations with a relativistic perfect fluid. We describe
the construction of initial data to excite f-mode oscillations
in Tolman-Oppenheimer-Volkoff (TOV) stars, and the
extraction of the corresponding GWs. In Sec. III, we show
that the numerical formalism introduced in this study
exhibits the necessary convergence to accurately compute

ROSOFSKY, GOLD, CHIRENTI, HUERTA, and MILLER PHYS. REV. D 99, 084024 (2019)

084024-2



the frequency and damping time of f-mode oscillations.
We also demonstrate that our simulations reproduce the
expected results from linear perturbation theory in the
appropriate limit. We summarize our findings and future
directions of work in Sec. IV.

II. METHODS

We evolve the spacetime by solving the Einstein field
equations using the tools of numerical relativity

Rμν −
1

2
Rgμν ¼ 8πTμν: ð1Þ

We express the four-dimensional metric gμν in the
standard 3þ 1 split of spacetime [65–70] as

ds2 ¼ −α2dt2 þ γijðdxi þ βidtÞðdxj þ βjdtÞ ð2Þ
with the spatial metric γij induced on each hypersurface of
the spacetime foliation, the lapse α, shift βi, and the
hypersurface unit normal vector

nμ ¼
�
α−1;−

βi

α

�
: ð3Þ

Projecting the Einstein equations onto the hypersurface and
along nμ yields a set of constraint and evolution equations
that together with suitable initial data form our initial value
problem.

A. Spacetime evolution

There are infinitely many formulations of the Einstein
equations that are equivalent in the continuum limit of
infinite spatial and temporal resolution, but that have
distinct principal parts and hyperbolicity properties, and
hence behave differently at finite resolution. In this study
we primarily employed the Baumgarte-Shapiro-Shibata-
Nakamura (BSSN) formalism [71,72], though the CCZ4
formalism [73] was also used for some results. For the cases
in this work in which the conformal and covariant Z4
(CCZ4) formulation was used, we set the damping coef-
ficients κ1 ¼ 0.02 and κ2 ¼ 0.
The evolution of the gauge conditions, i.e., lapse and

shift, is governed by standard 1þ log slicing condition and
a Gamma driver (see e.g., [67,74]).
We are making use of the publicly availableMCLACHLAN

code [75] which implements the above evolution equations
with fourth order central finite differences and is part of the
EINSTEIN TOOLKIT [76].
The nonlinear stability of smoothness properties of the

spacetime evolution is enhanced by adding an artificial
Kreiss-Oliger dissipation [77] to the spacetime variables.

B. General relativistic hydrodynamics

The neutron stars are modeled by a relativistic perfect
fluid

Tμν ¼ ρhuμuν þ pgμν ð4Þ

where uμ is the 4-velocity, ρ is the rest mass, h is the
specific enthalpy, and p is the pressure of the fluid.
The standard relativistic hydrodynamic equations are the

local conservation law for the energy-momentum tensor

∇μTμν ¼ 0; ð5Þ

and the conservation of rest mass

∇μðρuμÞ ¼ 0: ð6Þ

Both equations together with the spacetime metric gμν
represent the equations of motion of the fluid, which are
closed by a suitable EOS with the general form p ¼
pðρ; T; YeÞ where T is the temperature and Ye the so-
called electron fraction (low Ye indicates neutron-rich
material). In this pilot study we restrict ourselves to
polytropes, but in the future we intend to investigate more
realistic equations of state.
These equations can be cast into conservative form,

which is also known as the “Valencia formulation” [78]

∂tU þ ∂iFi ¼ S ð7Þ

where the conserved variables U are defined by

Uffiffiffi
γ

p ¼

0
B@

D

Sj
τ

1
CA ¼

0
B@

ρW

ρhW2vj

ρhW2 − p − ρW

1
CA ð8Þ

and the fluxes as well as the sources are given by

Fiffiffiffi
γ

p ¼

0
B@

Dðαvi − βiÞ
αS̃ij − βSj

αðSi −DviÞ − τβi

1
CA: ð9Þ

These conservation equations are implemented in the
EINSTEIN TOOLKIT’s GRHydro code [79], which uses high-
resolution shock-capturing methods.
We employ a fourth order Runge-Kutta method to

advance in time, either the weighted essentially non-
oscillatory (WENO) or piecewise parabolic method
(PPM) reconstruction method, second order flux evalua-
tions, and either the Harten-Lax-van Leer-Einfeldt (HLLE)
or Marquina Riemann solver. We set the Courant factor
to 0.4.
Since we are not able to accurately track regions that

transition from the fluid to the vacuum regime, all simulations
have an artificial low-density background atmosphere which
is evolved freely. For all simulations presented in this study
we choose an atmosphere value of ρatm ¼ 10−10 M−2 ≈
6.2 × 107 g=cm3 or ρatm ¼ 10−14 M−2 ≈ 6.2 × 103 g=cm3.
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C. Initial data

We use a perturbed TOV solution as initial data. The
matter perturbation is implemented by adding the (2,2)
pressure eigenfunction of an incompressible Newtonian
star in the Cowling approximation [80]. This form of the
perturbation is smooth and provides a well-controlled
framework to quantify numerical accuracy.
Specifically, the initial data were created with the

EINSTEIN TOOLKIT’s TOVSolver thorn. Then, we added
a pressure perturbation to excite f-mode oscillations using
an expression derived in the Cowling approximation. The
perturbation was given by

δP ¼ αρ

�
r
R

�
2

Y22 ð10Þ

where δP is the perturbed pressure, α is the amplitude of
the perturbation, ρ is density, r is radial distance from the
center of the star, R is the radius of the star, and Y22 is the
l ¼ 2 m ¼ 2 spherical harmonic. A plot of the density
distribution resulting from this perturbation can be seen
in Fig. 1.

D. Equation of state

We adopt a polytropic equation of state

P ¼ KρΓ ð11Þ

where Γ is the adiabatic index and K is the constant of
proportionality. For this work, we examined a polytrope
with Γ ¼ 2 and K ¼ 100 which is a common choice in the

literature. We leave to future work the expansion of the
methods applied in this paper to other EOSs.

E. Grid setup

The numerical grid is managed by the mesh refinement
CARPET [81] driver for CACTUS [82].
It implements a nonuniform grid via a nested set of

movable boxes (box-in-box) together with a hierarchical
(Berger-Oliger-style) time stepping. In these simulations
we employ four refinement levels where each additional
level doubles the resolution of the enclosing one. On the
finest grid, which is separately centered around each
neutron star, the resolution in each dimension is Δx ¼
0.0625 M ≈ 93.75 m for the highest resolution. The physi-
cal domain extends to 128 M ≈ 192 km.

F. Gravitational waves

The gravitational wave strain is extracted using the
standard Newman-Penrose formalism [83], in which a
particular contraction of the Weyl tensor with a suitably
chosen null tetrad yields a gauge-invariant quantity ψ4 that
encodes the outgoing gravitational radiation [84].
Specifically, ψ4 is related to the second time derivative
of the two strain polarizations ḧþ;× by

ḧþ − iḧ× ¼ ψ4 ¼
X∞
l¼2

Xl
m¼−l

ψlm
4 −2Ylmðθ;φÞ; ð12Þ

where we also introduced the multipole expansion of ψ4 in
spin-weighted spherical harmonics [85] of spin weight
s ¼ −2.

G. Models

We employed various models in which we altered
simulation parameters such as perturbation amplitude,
the spacetime formalism, etc. We present and label these
models in Table I. All models used a 1.4 M⊙ TOV star
which had a central density of 0.001 28 M−2 and the EOS
described in Sec. II D.

FIG. 1. Plot of density contours ρ (in code units) of a strongly
perturbed TOV solution. The star was excited using a pressure
perturbation that was derived in the Cowling approximation to
induce f-mode oscillations. The perturbation amplitude is chosen
as α ¼ 0.141 for the star shown in the figure.

TABLE I. This table lists all of the models in the first column
and the important quantities that changed between models. These
quantities were the spacetime formalism, the atmospheric density
ρatm, the perturbation amplitude α, the Riemann solver, and the
reconstruction method.

Model Formalism ρatmðM−2Þ α Riemann Recon.

PPM big α BSSN 10−10 0.141 Marquina PPM
PPM big ρatm BSSN 10−10 0.0141 Marquina PPM
PPM CCZ4 CCZ4 10−10 0.0141 Marquina PPM
PPM BSSN 10−14 0.0141 Marquina PPM
WENO BSSN 10−14 0.0141 Marquina WENO
WENO HLLE BSSN 10−14 0.0141 HLLE WENO
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III. RESULTS

A. Extracted gravitational waveforms

We extracted the gravitational waves at distances of
10 M, 40 M, 70 M, 100 M, and 120 M. The analysis relied
on the l ¼ 2 m ¼ 2 mode of the ψ4 data extracted from
100 M unless otherwise stated.
This system produced linearly polarized gravitational

waves, which differ from other phenomena in gravitational
wave physics which produce elliptically polarized waves.
This linear polarization arises from the lack of rotation in
our oscillating neutron star. In contrast, more often studied
gravitational wave producing systems such as binary
neutron star mergers and binary black hole mergers use
their rotation to produce their gravitational waves and give
their gravitational waves their elliptical polarization.
The polarization is imprinted in the real and imaginary

parts of ψ4 which represent the plus and cross polarizations
respectively. The real part exhibits a sinusoidal form with a
frequency close to the fundamental oscillation mode
frequency and on top a secular exponential decay; see
Fig. 2. The imaginary part is zero to almost machine
precision, indicating that no cross polarization was present.
We note that ψ4 had high frequency noise as a result of

passing through refinement layers. We removed these high
frequency features with low pass filters that are described in
detail in the Appendix.

B. Convergence

We demonstrate that differences between resolutions
behave as expected given the numerical method we adopt.
This implies that the numerical error in our simulations can be

quantified. Only with such a reliable error estimate is it
possible to tell whether any damping in the gravitational
waves is physically caused by gravitational radiation or by
numerical dissipation. There are several possibilities to
demonstrate convergence in the GW output of such models.
We choose to performconvergence tests on the extrema ofψ4.
As usual, we assume that the numerical error as

represented by a Taylor expansion is dominated by the
leading order term. In this case three resolutions suffice to
demonstrate convergence and fit the parameters of the
Taylor expansion. Specifically, the numerical solution for
high, medium, and low resolutions are related by

ψ4;high − ψ4;med ¼ cnðψ4;med − ψ4;lowÞ; ð13Þ
where cn is the convergence factor of order n and is
determined only by the resolutions and convergence
order as

cn ¼
Δxnhigh − Δxnmed

Δxnmed − Δxnlow
: ð14Þ

We present the convergence order for all our numerical
relativity simulations in Table II. A sample case of this
analysis for the WENO reconstruction is presented in
Fig. 3. Using the convergence factor and order, we were
able to estimate the systematic error due to the changing
resolution as

error ¼ jcnΔxnj: ð15Þ

The results for the estimated error of the WENO
reconstruction is presented in Fig. 4. This error behaves
as systematic error caused by the differences in simulation
resolution. As such, we did not propagate this error into the
analysis because the analysis aims to characterize the effect
of this same resolution dependence on the damping times.

C. Fourier analysis

Frequency spectra of the gravitational waveform were
examined by taking the fast Fourier transform (FFT) of the
ψ4 data. We plot the frequency spectrum of one of the runs
in Fig. 5. We see that the most excited frequency is nearly
aligned with the expected frequency of 1.579 kHz, illus-
trating that our perturbation excited the desired f mode. In
addition, we observe at least three secondary excitations
otherwise known as pmodes. We have verified that the first
two excitations occur at 3.710 and 5.684 kHz, which is
consistent with our results.

D. Frequency

We also investigated the frequency evolution as the run
progressed. Therefore, we took the roots of the ψ4 time
series to estimate the period, which was in turn used to
obtain frequency estimates for each cycle. We used the

FIG. 2. The panel shows the real part of ψ4 from the PPM run
with a resolution of 0.08 M. We observe that ψ4 takes the form of
a decaying exponential. Furthermore, since the gravitational
waves are linearly polarized, we have confirmed that the
imaginary part of ψ4 vanishes.
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FIG. 3. Convergence of the extrema of ψ4. Here low, med, high
refer to runswith fine resolutions of 0.125M, 0.08M. and 0.0625M
respectively for the WENO case. This information can be inferred
by noticing that the resolutions satisfy the relation ðhigh −medÞ ¼
cnðmed − lowÞ; see Eq. (13). We found cn ∼ 0.197 by taking cn to
be the best fit of our data to Eq. (13). Using Eq. (14) for
c2.84 ∼ 0.197, we found that n ¼ 2.84 which is consistent with
the assumed order of convergence. This result is close to the order of
our lowest order contributions to our numerical method, which
demonstrates both the convergence and internal consistency of our
numerical methods. We acknowledge that the value in this plot
differs from that quoted inTable II as this convergence test applies to
a longer portion of the waveform. The value quoted in Table II only
uses the portion of the waveform that was used to compute the
damping times. See Sec. III F for more details.

FIG. 4. Estimate for the relative error in ψ4. Here low, med,
high refer to runs with fine resolutions of 0.125 M, 0.08 M, and
0.0625 M respectively for the WENO case. This error estimate
was obtained using Eq. (15) and dividing by the value of ψ4 at
each instant in time. Unlike Fig. 3 where we used a constant value
of cn for a best fit to Eq. (13), our value of cn and n here are
solutions to Eqs. (13) and (14) at each point in time.

TABLE II. Table depicting the results from our oscillating
neutron star simulations. These results include the resolution of
the simulation Δx, its frequency f, the error in that frequency Δf,
the damping time τ, and its estimated errorΔτ. The damping error
is the statistical fitting error of the data and does not include any
systematic errors alluded to in Secs. III B and III F. The table is
divided by the simulation models described in Table I. Some
cases yield convergence orders that exceed the formal accuracy of
the numerical schemes involved. Such so-called overconvergence
usually indicates that the data are close to but not quite within the
convergent regime. At the end of each group of simulations, we
include the damping time value at Δx → 0 using Richardson
extrapolation. This procedure will systematically underestimate
the error in the presence of overconvergence and should be taken
with a grain of salt. We did not include errors on this value or the
frequency when performing this extrapolation to infinitely fine
resolution. The expected frequency and damping time for all
simulations in the table according to linear theory are 1.579 kHz
and 298 ms respectively.

Δx (M) f (kHz) Δf (kHz) τ (ms) Δτ (ms) n

PPM big α 0.25 1.551 0.023 45.29 0.39 4.84
0.16 1.552 0.013 58.02 0.93 4.84
0.125 1.555 0.017 59.81 1.65 4.84
0.08 1.555 0.013 63.76 1.42 4.84
0.0625 1.555 0.011 64.39 1.46 4.84
0 � � � � � � 64.83 � � � 4.84

PPM big ρatm 0.25 1.572 0.019 8.44 0.21 3.83
0.16 1.579 0.014 38.36 1.56 3.83
0.125 1.580 0.023 63.48 9.88 3.83
0.08 1.580 0.004 178.73 3.79 3.83
0.0625 1.581 0.004 262.11 7.58 3.83
0 � � � � � � 433.80 � � � 3.83

PPM CCZ4 0.25 1.574 0.004 8.41 0.13 3.14
0.16 1.577 0.003 35.36 0.96 3.14
0.125 1.579 0.004 73.21 0.57 3.14
0.08 1.580 0.004 195.57 3.76 3.14
0.0625 1.581 0.004 268.25 6.33 3.14
0 � � � � � � 376.65 � � � 3.14

PPM 0.25 1.573 0.005 7.47 0.16 2.98
0.16 1.576 0.004 36.61 0.55 2.98
0.125 1.576 0.003 73.35 1.05 2.98
0.08 1.577 0.004 168.48 2.71 2.98
0.0625 1.577 0.003 222.20 3.85 2.98
0 � � � � � � 313.74 � � � 2.98

WENO 0.25 1.573 0.005 80.61 0.99 2.79
0.16 1.576 0.004 165.98 1.54 2.79
0.125 1.577 0.004 209.60 2.14 2.79
0.08 1.577 0.003 258.09 4.07 2.79
0.0625 1.578 0.003 270.44 4.80 2.79
0 � � � � � � 283.80 � � � 2.79

WENO HLLE 0.25 1.574 0.005 124.48 8.42 5.77
0.16 1.576 0.004 195.72 1.71 5.77
0.125 1.577 0.003 232.12 2.44 5.77
0.08 1.579 0.011 265.56 2.80 5.77
0.0625 1.578 0.003 275.47 5.00 5.77
0 � � � � � � 290.37 � � � 5.77

ROSOFSKY, GOLD, CHIRENTI, HUERTA, and MILLER PHYS. REV. D 99, 084024 (2019)

084024-6



average frequency as the value for the simulation and the
standard deviation as the error.
Although most of the runs exhibited constant frequency

regardless of resolution, runs with high-density atmos-
pheres of 10−10 M−2 and a length longer than 10 ms
experienced a rise in frequency as the runs progressed.
In contrast, the frequency of the low-density atmosphere

runs of 10−14 M−2 remained constant for even the longest
runs which lasted 50 ms. We can see the frequency
evolution in Fig. 6. The likely physical cause of this
behavior is accretion of artificial atmosphere material onto
the star which leads to a steady change in the background
stellar model and hence a slight change in its fundamental
oscillation frequencies.
We found that the frequency was fairly independent of

resolution as displayed in Table II, though the higher
amplitude runs did experience a lower frequency than
the lower perturbation runs. The frequencies all appear to
be around 1.579 kHz which is the expected frequency for
f-mode oscillations based on linear theory.
We note that since the gravitational waves were linearly

polarized, we could not determine instantaneous frequency
by taking the derivative of the phase of the gravitational
waves as the imaginary part was nearly zero.

E. Damping times

Damping times were extracted by performing linear fits
to the natural log of the extrema of ψ4, as shown in Fig. 7.
Error estimates were computed using the standard devia-
tions of the damping time calculations using the extrema of

FIG. 5. Fast Fourier transform (FFT) of the ψ4 data from
WENO HLLE simulation with a fine resolution of 0.0625 M. The
gravitational waves here were extracted from 10 M. The 10M
data best illuminate the excitations in the frequency spectrum
because it occurs before any AMR boundary introduces high
frequency features (we also present the frequency spectrum
extracted at 100 M in Fig. 10). We note the primary is near
the expected f-mode excitation frequency of 1.579 kHz. We also
observe secondary excitations at 3.710, 5.684, and 7.658 kHz
which are consistent with the first overtones (p modes) of the
f mode. We note that the spikes at the higher frequencies are
suppressed after applying the filtering. See the Appendix for
more details.

FIG. 6. Frequency evolution of the waveform as time pro-
gressed of the PPM and PPM big ρatm runs at a fine resolution of
0.125M. This frequency was computed by examining the roots of
the waveform time series and finding the time interval between
them. This allows us to track the frequency evolution throughout
the run. For the high atmosphere plot in red, the frequency
increases after about 10 ms. The low atmosphere run in blue
remained constant throughout the entirety of the run.

FIG. 7. Linear fit of the extrema of ψ4 that was used to obtain
damping times of the gravitational waves for the PPM CCZ4
simulation with a fine resolution of 0.16 M. We note in particular
that the extrema of ψ4 differed by an offset that may skew the
results. Therefore, we examined the slopes computed using the
maxima and minima individually to provide an error estimate for
the damping time of each simulation. The quoted value for the
damping times was computed using the full dataset of extrema.
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ψ4 individually rather than from all the extrema in the
simulation dataset.
To compute the damping times from our suite of

numerical relativity simulations we used the WENO and
PPM reconstruction methods, finding that the former is
much more robust and accurate than the latter. We also
show results for a sample simulation, “PPM big α” in
Fig. 8, whose perturbation amplitude is 10 times larger than
those that reproduce predictions in the linear regime. This

simulation was prepared to exhibit the nonlinear regime of
neutron star f-mode oscillations. Since simulations with
Δx < 0.0625 M were deemed to be too computationally
intensive to run, we extrapolated these results to the
continuum limit to see if they approach the expected value
of 298 ms. We used Richardson extrapolation with unequal
resolution ratios to estimate the value at infinitely fine
resolution. A summary of these calculations is presented in
Table II.

FIG. 8. Damping times for simulations of neutron star f-mode oscillations as a function of fine resolution. The black dash-dot line
represents the expected damping time for a static TOV of this mass computed using linear theory. The star value at Δx → 0 M is the
value obtain for the frequencies by extrapolating to infinite resolution. We notice that the runs using PPM reconstruction behaved
similarly to one another. However, the high atmosphere PPM ρatm and PPM CCZ4 runs diverge from the PPM run at finer resolutions.
This causes the Richardson extrapolated value of those high atmosphere sequences to significantly overshoot the expected damping time
from linear theory. We described in Sec. III D that the high atmosphere runs experienced increased frequency as the run progressed. We
believe the effects of this evolving frequency propagate into the damping time calculation, leading to the divergence of these sequences
of damping times. The WENO reconstruction runs also exhibited similar characteristics. In addition, the WENO runs are significantly
more accurate than the PPM runs at a given resolution. PPM models required twice the resolution than the WENO models for similar
accuracy. The high perturbation run exhibited entirely different damping time characteristics from the others, indicating that it was likely
not in the linear perturbation regime.
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Figure 8 shows that theWENO reconstruction approaches
the linear perturbation prediction of 298 ms for the highest-
resolution run of each simulation. The three simulations that
significantly depart from the linear perturbation regime
correspond to two categories: (i) The two simulations
with damping times much larger than 298 ms correspond
to simulations with large artificial atmospheres, ρatm∼
10−10 M−2; (ii) the simulation with estimated damping time
much smaller than 298 ms is clearly outside of the linear
perturbation regime by construction.
These results indicate that provided a numerical setup in

which the atmosphere used for the simulations satisfies
ρatm ≲ 10−14 M−2 and the perturbation applied to the TOV
star is within the linear regime, the extracted damping times
with the WENO reconstruction method from our suite of
numerical simulations is consistent with linear perturbation
predictions.

F. Evolution of damping time

High-resolution runs with longer damping times required
longer analysis times to obtain satisfactory statistical fits.
This necessity derives from the difference in position
of individual points being significant compared to the

difference induced by the true damping of the waveform
over short timescales. In essence, the longer we run the
simulation, the closer we get to running for the damping
time we would like to measure; thereby, we reduce the
statistical fitting error in the damping time.
Although increasing the run time decreases the statistical

error in the damping time, it introduces systematic error in
the damping time calculation. We found that as the run
progressed, the waveform did not exhibit a true exponential
decay. Instead, the waveform systematically decayed
quicker than an exponential damping time would suggest
at long times. This posits the existence of some other source
of decay in the waveforms, most likely some form of
numerical dissipation.
Figure 9 illustrates the evolution of the damping time

value vs the analysis time, the cutoff time for waveform data
in the analysis to calculate the damping time beyond which
the datawould not be used for such an analysis.We also note
that the first 2ms of data alsowere not used in the analysis to
allow time for any transients to die out. In addition, the figure
depicts the statistical fitting error at each of those points. One
can observe that the damping time and statistical error
decrease as the analysis time increases. We observed a local
minimum in the statistical error at an analysis time of 15 ms
and thus chose that analysis time for the computation of the
damping times in Table II.

IV. CONCLUSIONS

We have carried out systematic analyses of the accuracy
needed to extract the frequency and damping time of
f-mode oscillations. We have demonstrated the robustness
of our results by extracting these observables, and dem-
onstrating that our results are similar when using both the
WENO and PPM reconstruction methods.
We have shown that for small perturbations, the damping

times extracted from our numerical relativity simulations
are consistent with linear theory perturbations when we
consider atmospheres ρatm ≤ 10−14 M−2. On the other
hand, we have found that if artificial atmospheres are
poorly chosen, ρatm ≤ 10−10 M−2, the extracted damping
times from our numerical simulations differ significantly
from linear perturbation predictions at evolutions ≳10 ms.
This may be caused due to accretion of the atmosphere,
which introduces a secular change (increased mass) in the
background solution.
The convergence analyses we have presented suggest

that even for a careful choice of numerical schemes a
minimum resolution of ∼0.125 M is needed to accurately
extract the GW induced damping time of f-mode oscil-
lations. WENO reconstruction clearly outperforms the
PPM scheme, which needed twice the resolution to obtain
similar accuracies in the damping times. This resolution is
within the range of existing neutron star numerical rela-
tivity simulations that have been presented in the literature
albeit on the more computationally expensive end.

FIG. 9. Plot of the damping time τ vs analysis time with the
statistical fitting error at each data point for the WENOHLLE and
PPM datasets with Δx ¼ 0.0625 M. The analysis time is defined
as the cutoff time for waveform data to be used in the analysis.
Data beyond the analysis time were discarded for the purpose of
the analysis. The first 2 ms of data which are included in the
analysis were also discarded to allow for any transient effects to
decay. We notice that statistical error clearly decreases as the
analysis time increases. However, we observe that τ decreases
away from the expected value of 298 ms with increased analysis
time. We noticed that in both curves in the plot there appears to be
a local minimum in the statistical uncertainty at an analysis time
of 15. As such, we selected an analysis time of 15 ms for the
damping time analysis in this paper.
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Having established a blueprint of numerical accuracy to
extract the frequency anddamping times offmodes, in future
workwewill put this setup to use and investigate the accuracy
with which we can infer properties of the EOS through GW
observations of highly eccentric neutron star encounters.

ACKNOWLEDGMENTS

This research is part of the Blue Waters sustained-
petascale computing project, which is supported by the
National Science Foundation (Grants No. OCI-0725070 and
No. ACI-1238993) and the State of Illinois. Blue Waters is a
joint effort of the University of Illinois at Urbana-Champaign
and its National Centre for Supercomputing Applications.

Some numerical results were obtained using the University
of Maryland Deepthought2 HPC Cluster. This work was
supported in part by joint research workshop Grant
No. 2015/50421-8 from FAPESP and the University of
Maryland, College Park. This work was supported in part by
Perimeter Institute for Theoretical Physics. Research at
Perimeter Institute is supported by the Government of
Canada through the Department of Innovation, Science
and Economic Development Canada and by the Province
of Ontario through the Ministry of Research, Innovation and
Science. We acknowledge support from the NCSA. Grants
No. NSF-1550514 and No. NSF-1659702 are gratefully
acknowledged. We thank the NCSA Gravity Group for
useful feedback.

APPENDIX: FILTERING

Initially, the ψ4 data contained significant high frequency noise that interfered with our analysis. We noted that the signals
extracted from 10 M, before passing through the first refinement boundary, did not exhibit any such high frequency noise.
Therefore, we hypothesized that it passed through the various refinement boundaries as it traveled to the relevant extraction
sphere at 100M.
To compensate for this high frequency behavior induced from the refinement layers, we applied a low pass filter to the

raw data. Specifically, we applied a butter filter with zero phase filtering. Relative to the sample frequency, the filter had a
passband frequency of 0.01 and a stop band frequency of 0.04. The passband ripple amplitude of the filter was 1 dB and the
stop band attenuation was 60 dB. This filtering was essential to ensuring the extracted ψ4 produced meaningful data
analysis especially for the damping times. Figures 10 and 11 illustrate the effect of the filtering on the data. We observe the
frequency spectrum before and after the filtering by looking at the FFTs extracted at 100M in Fig. 12. We observe that the
unfiltered frequency spectrum is very noisy, which is most apparent after the second peak. The filtering eliminates this
noise. However, the filtering also significantly suppresses the second peak and renders the third and fourth invisible.

FIG. 10. Plot of the ψ4 data extracted at 10 M. The left plot depicts the unfiltered data. We note that the unfiltered data lack any sort of
high frequency component as they have yet to pass through a refinement boundary. When we filter the data as in the right plot, we
observe that the waveform is now centered at the origin rather than offset as it had been previously. The waveform is also hardly
distorted, with most of the distortion occurring at the end of the waveform.
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FIG. 11. Plot of the ψ4 data extracted at 100 M. The left plot depicts the unfiltered data. We note that the unfiltered data are much
noisier than the data extracted at 10 M in Fig. 10, having passed through multiple refinement layers. These refinement layers are believed
to induce high frequency noise in the waveform. In the plot, we show the postfiltered data. Compared to Fig. 10 the data have been
significantly changed by the filtering. In turn, the postfiltered data appear to match the data in Fig. 10 much more closely. This supports
the notion that the unfiltered 100 M data were contaminated by high frequency noise passing through refinement boundaries. We also
note that the end of the waveform is distorted in a similar manner as Fig. 10. For this reason, we removed the end of the data from the
computation of the damping times.

FIG. 12. Plots of the FFTs of the WENO HLLE simulation with a fine resolution of 0.0625 M before and after the filtering. The
gravitational waves here were extracted from 100M, the portion that was analyzed to extract the frequencies and damping times. The left
plot illustrates the unfiltered FFT, which contains the four distinct peaks seen in Fig. 5. However, there is a significant amount of noise
after the second peak. On the right we show the FFT after the filtering has been applied. We observed that the noise is no longer present.
However, the second peak is significantly suppressed, while the third and fourth peaks are no longer visible. Thus we did not consider
effects from these modes in our analysis of the frequency or damping times.
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