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We present the first models of extreme-mass-ratio inspirals within the effective-one-body (EOB)

formalism, focusing on quasicircular orbits into nonrotating black holes. We show that the phase

difference and (Newtonian-normalized) amplitude difference between analytical EOB and numerical

Teukolsky-based gravitational waveforms can be reduced to &10�1 rad and &2� 10�3, respectively,

after a 2-year evolution. The inclusion of post-Newtonian self-force terms in the EOB approach leads to a

phase disagreement of �6–27 rad after a 2-year evolution. Such inclusion could also allow for the EOB

modeling of waveforms from intermediate-mass-ratio, quasicircular inspirals.
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Introduction.—Extreme-mass-ratio inspirals (EMRIs)
are the gravitational wave (GW) driven coalescences of
stellar mass compact objects with supermassive black
holes (SMBHs). When the large black hole’s (BH’s)
mass is in the range 105M�–107M�, EMRI waves are
emitted at frequencies well suited to measurement by the
planned Laser Interferometer Space Antenna (LISA).
Because EMRI events are expected to be abundant [1]
and will carry detailed information about strong-field
spacetimes near SMBHs [2], they are high-priority targets
for LISA observation. The intrinsic feebleness of these
waves will require accurate waveform templates to detect
and faithfully measure the signals produced by nature.
Because EMRIs can spend thousands of cycles near the
SMBH’s innermost stable circular orbit (ISCO), the bi-
nary’s orbital speed is v=c� 0:1–0:5, a regime where
traditional post-Newtonian techniques perform poorly.
Numerical models built using BH perturbation theory
should be able to reliably model EMRI signals. However,
the computational cost of covering the full span of EMRI
parameter space (including effects of BH spin, nonequato-
rial orbits, and eccentricity) is likely to be very high [1].

This has motivated us to examine techniques for reliably
approximating these waves at a much smaller computa-
tional cost. The effective-one-body (EOB) formalism was
introduced as a way to analytically describe the inspiral,
merger, and ringdown waves emitted by comparable-mass
BH binaries [3,4]. This formalism was then extended to
higher post-Newtonian (PN) orders [5], spinning BHs [6–
8], small mass-ratio mergers [9,10], and was further im-
proved by introducing factorized waveforms [10,11]. By
calibrating a few adjustable parameters, [12,13] showed
that the phase and amplitude of the EOB and numerical-
relativity waveforms can be made to agree within the
numerical error of the simulations, thus providing GW
detectors with faithful templates. In this analysis, we cali-
brate EOB with BH perturbation theory templates in order

to similarly model EMRI waves. Such an analysis must be
done separately from the previous EOB-numerical relativ-
ity calibration, because numerical relativity simulations
cannot yet model the tens or hundreds of thousands of
orbits needed to describe EMRI signals.
As a first step, we restrict our models to a small compact

object spiraling along a quasicircular orbit into a nonspin-
ning SMBH [14]. Although the assumptions of circularity
and zero spin can and will be relaxed in the future, there
exist astrophysical motivations for this initial choice of
binary configuration. For example, the tidal separation
scenario for EMRIs [15] implies nearly circular but arbi-
trarily inclined orbits in the >10�4 Hz frequency band
relevant for LISA, and the accretion disk capture picture
[16–18] implies orbits that are both nearly circular and in
the equatorial plane of the SMBH. In addition, the charac-
teristics of the SMBHs themselves are uncertain in the
<107M� mass range most relevant for LISA. In some
astrophysical scenarios, the growth of these BHs is domi-
nated by the accretion of stars moving on random trajecto-
ries, instead of by the accretion of gas disks, thought to be
more important for higher-mass SMBHs [19]. Such growth

would lead to â � j ~Jj=M2 � 1 (in natural units with G ¼
c ¼ 1, which we use throughout this Letter). The non-
rotating spacetime is a reasonable first approximation.
We now systematically compare EMRI waveforms com-

puted in the EOB approach to those calculated using BH
perturbation theory via numerical solution of the
Teukolsky equation [20–22]. As we describe in the remain-
der of this Letter, we find that appropriately calibrated
EOB waveforms do an excellent job modeling waves
computed using BH perturbation theory. This suggests
that the EOB scheme can be an outstanding tool for mod-
eling EMRI waves in future LISA data analysis.
Analytical and numerical modeling.—For a BH binary

with masses m1 and m2, we set M ¼ m1 þm2 and � ¼
m1m2=M ¼ �M. In the absence of spins, the motion is
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constrained to a plane. Let us introduce Schwarzschild-like
coordinates (r, �) (where r is M normalized) centered on
the binary’s center of mass, as well as their reduced
(� normalized) conjugate momenta (pr, p�). The non-

spinning EOB Hamiltonian then reads [3] Hreal ¼
M

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2�½ðHeff ��Þ=��p �M, where the effective
Hamiltonian is [3,5,10]

Heff ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2
r� þ AðrÞ

�

1þ p2
�

r2
þ 2ð4� 3�Þ�p

4
r�
r2

�

s

: (1)

We use here the reduced conjugate momentum pr� to the

EOB tortoise radial coordinate r� because it improves the
numerical stability of the code [10]. The tortoise coordi-

nate is defined via dr�=dr ¼
ffiffiffiffiffiffiffiffiffiffi

DðrÞp

=AðrÞ, where AðrÞ and
DðrÞ are obtained by applying the Padé resummation [5] to
the Taylor-expanded forms [3,5] ATðrÞ ¼ 1� 2=rþ
2�=r3 þ ð94=3� 41�2=32Þ�=r4, DTðrÞ ¼ 1� 6�=r2 þ
2�ð3�� 26Þ=r3. The EOB Hamilton equations are written

using reduced quantities Ĥreal � Hreal=�, t̂ ¼ t=M [4]:

dr

dt̂
¼ AðrÞ

ffiffiffiffiffiffiffiffiffiffi

DðrÞp

@Ĥreal

@pr�
;

d�

dt̂
¼ @Ĥreal

@p�

; (2)

dpr�
dt̂

¼ � AðrÞ
ffiffiffiffiffiffiffiffiffiffi

DðrÞp

@Ĥreal

@r
;

dp�

dt̂
¼ F̂�; (3)

where F̂� is a Padé-resummed radiation-reaction force
[4,23], related to the GW energy dissipation to be defined
later. Initial data are found through a mock evolution,
initialized at an orbital separation of 100M using initial
conditions for a quasicircular inspiral [4].

With the EOB inspiral dynamics in hand, we compute
the multipole-decomposed GW h‘m (‘ and m refer to
spherical harmonics), following the factorized PN pre-
scription of [11], which depends directly on orbital quan-
tities. The EOB GW phase is computed by solving
_�‘m ¼ �ð1=mÞIm½ _h‘m=h‘m�. Errors in the EOB wave-
forms arise due to inaccuracies in the numerical solution
of Eqs. (2) and (3) and inaccurate initial data. We have
investigated such sources of error and estimate them to be
no worse than ��22 & 0:03 rad in the waveform’s phase
and �h22=h22 & 10�7 in the normalized amplitude after a
2-year evolution. This cumulative error is primarily domi-
nated by the accuracy of the routine used in MATHEMATICA

to solve Eqs. (2) and (3).
We compare EOB waves with waveforms computed in

BH perturbation theory by solving the Teukolsky equation.
We use the code described in [21] (modified with the spec-
tral techniques of [24]) to construct the Newman-Penrose
curvature scalar c 4. Our code computes c 4 ¼
R�1

P

‘mZ‘m�2Y
‘mð�;�Þe�im�t where �2Y‘mð�;�Þ is a

spin-weight �2 spherical harmonic, � is the frequency
of circular Schwarzschild orbits, and R is the distance from
the center of mass to the observer. The amplitude Z‘m is
found by first building a Green’s function to the radial
Teukolsky equation, and then integrating that function

over a source made from the stress-energy tensor of the
small body orbiting the BH; see [21] for specifics.
The radial Teukolsky equation possesses two asymp-

totic solutions that determine the behavior of c 4 at
spatial infinity and near the event horizon. Far away, c 4

is related to the GWs carried from the system via c 4 !
1
2 ð €hþ � i €h�Þ. Therefore, the solution to the radial

Teukolsky equation that describes purely outgoing radia-
tion at spatial infinity can be used to construct the flux of
radiation and the waveform that distant observers measure.
Near the event horizon, c 4 describes tidal interactions of
the BHwith the orbiting body [20]. The solution describing
ingoing radiation at the horizon can be used to construct
the radiation flux absorbed by the BH. With these fluxes,
we can then calculate the rate at which the orbital radius
changes, _r, by noting that for slow backreaction the system
evolves through a sequence of geodesic orbits.
We compute c 4 on a grid of orbits from r ¼ 10 000M to

the Schwarzschild ISCO at r ¼ 6M (in Boyer-Lindquist

coordinates), evenly spacing our orbits in v � ffiffiffiffiffiffiffiffiffiffi

M=r
p

.
(Stable circular orbits do not exist for r < 6M, so we
cannot infer _r from dE=dt here.) Errors in the
Teukolsky-based waveforms are dominated by truncation
of the ð‘;mÞ sums in c 4 and by the discretization onto a
grid in v. The sums and discretization are chosen such that
the fractional error in the flux is smaller than 10�10 [21,22].
In the low velocity region v < 0:1, we find that the flux is
accurate to at least 10�13. Such an error translates to
inaccuracies in the GW phase of less than 10�2 rad over
a 2-year evolution.
Systems, regions and models.—To demonstrate the flexi-

bility of the EOB model in matching the Teukolsky-based
waveforms, we examine two fiducial EMRI systems,
labeled systems I and II, that sample different regions of
the LISA noise curve. In both cases, we consider a 2-year
long quasicircular inspiral of nonspinning BHs. System I
has ðm1; m2Þ ¼ ð105; 10ÞM�; system II has ðm1; m2Þ ¼
ð106; 10ÞM�. We do not consider lower or higher total
mass binaries as they would either reach the ISCO outside
the LISA optimal sensitivity band (LISA’s noise rises
sharply above �10�2 Hz) or lie significantly inside the
white-dwarf confusion limit (much below �0:002 Hz
[25]). System II (m2=m1 ¼ 10�5) begins at an initial sepa-
ration rin ’ 10:6M and terminates at the ISCO, sweeping
GW frequencies in the range fGW 2 ½1:8� 10�3; 4:4�
10�3� Hz. System I (m2=m1 ¼ 10�4) starts at rin ’
29:34M and terminates at rfin ’ 16:1M, sweeping frequen-
cies in the range fGW 2 ½4� 10�3; 10�2� Hz. The mass
ratios we consider, (10�4, 10�5) are 2 orders of magnitude
smaller than those studied in the complementary analyses
of [9,10]. As such, our in-band signal is dominated by a
long inspiral; the contributions of the final plunge, merger,
and ringdown, which dominate the signal of [9,10], are
much less important here. These choices allow the study of
the early and late EMRI dynamics, while guaranteeing the
GW signal is in the sensitive part of the LISA band.
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We define two EOB models differing in the resumma-
tion of the radiation-reaction force in Eq. (3). Using the

balance law, we write F̂� ¼ �F=ð��Þ, where F is the
GW energy flux. We use (i) the Padé approximant to the
energy flux [13,23] FP ¼ Fp

q ðvpoleÞ, where vpole is an

adjustable parameter locating the EOB light ring, and pþ
q is twice the approximant’s PN order [i.e., ðv=cÞðpþqÞ],
and (ii) the � approximant to the energy flux [11] F� ¼
2=ð16�ÞP‘¼8

‘¼2

P

m¼‘
m¼1ðm�Þ2jRh‘mj2. Except when investi-

gating the effect of the self-force, the orbital dynamics are
computed setting � ¼ 0 in F, as well as in AðrÞ and DðrÞ.

Results.—Figure 1 shows the absolute value of the dif-
ference between the Newtonian-normalized (FNewt ¼
32�2v10=5) Teukolsky and EOB (uncalibrated and cali-
brated) fluxes as a function of the orbital velocity v. The
Teukolsky flux includes energy radiated to infinity and
absorbed by the BH’s event horizon. The uncalibrated
Padé flux (F7

4) and � flux are computed through 5.5PN

order, but in the Padé flux we also add horizon absorption
corrections [26] and set vpole to the Schwarzschild light-

ring value. The uncalibrated Taylor flux (i.e., the PN
Taylor-expanded flux [27]) gives a residual about 5 times
worse than the uncalibrated Padé and � fluxes. The cali-
brated Padé flux (F7

6) is computed through 6.5PN order,

including the horizon absorption corrections, and calibrat-
ing vpole and the 6PN and 6.5PN coefficientsF 12 andF 13;

see [27] for details. The calibrated � flux is computed
through 6PN order, without horizon absorption correc-
tions, and calibrating the 6PN coefficients c�22

6 in �22 and

the 5PN coefficients c
�33

5 in �33; see [11] for details. The

calibration is here performed via a least-squares fit to the
numerical Teukolsky flux. For velocities v 2 ½0:01; 0:1�
the agreement is better than 10�8, with agreement of 10�13

near v ¼ 0:01 for all models.
Comparisons of Teukolsky-based and EOB waveforms

are performed once they are aligned in time and phase.
This guarantees that the fitting factor is maximized over
time and phase of coalescence in a matched filtering cal-
culation with white noise [13]. The alignment procedure
depends sensitively on the alignment window chosen. We
align the waveforms at low frequencies, in the interval t 2
½0; 64��GW, where �GW is the GW wavelength, t ’
ð0; 0:006MÞ [t ’ ð0; 0:013MÞ] months for system I [system
II], to a level of 10�10 [10�6] rad in the phase for system I
[system II]. We have checked that choosing any interval
window of width <29�GW changes the final dephasing by
less than 10�3 rad and the relative amplitude difference by
less than 10�6.

In the left panel of Fig. 2 we plot the phase difference, or
dephasing, between the dominant h22 mode of the
Teukolsky-based and EOB waveforms as a function of
time. We find that after 2 years the dephasing is �40
(3000) rad for system I (system II) when using the EOB-
model with Taylor flux (not shown in the figure) [27], in
qualitative agreement with previous investigations [28].
The EOB-model with uncalibrated Padé flux at 5.5PN

has a dephasing of �5 (530) rad for system I (system II);
this can be reduced to �0:1 (0.01) rad using the calibrated
Padé flux at 6.5PN. The EOB model with uncalibrated
� flux at 5.5PN has a dephasing of �10 (530) rad for
system I (system II); this can be reduced to �2 (0.8) rad
with the calibrated � flux at 6PN.
In the right panel of Fig. 2, we compare the amplitude of

the dominant mode A22 ¼ jh22j, computed in the EOB and
Teukolsky frameworks. After 2 years of evolution, the
calibrated Padé- and �-flux EOB models have a disagree-
ment of �10�5 for system I and �2� 10�3 for system II.
Such phase and amplitude agreement is fantastic when one
takes into account the 2-year length of observation, during
which system I (system II) evolves over 2� 106 (9� 105)
rad. Interestingly, we find that if we switch on the relative �
terms in the 3PN EOB Hamiltonian Eq. (1) and in the flux,
the dephasing for the EOB model with � flux at 6PN
increases to �27 (6) rad for system I (system II).
(Adding the � terms to the Hamiltonian amounts to ac-
counting for the conservative self-force; adding those to
the flux amounts to taking the dissipative self-force to
higher order in mass ratio.) The main effect comes from
the dissipative self-force, a result consistent with [29] for
circular orbits.
We also compare the strongest higher harmonics using

the EOB model with Padé flux at 6.5PN. In the case of the
ð‘;mÞ ¼ ð3; 3Þ and ð‘;mÞ ¼ ð4; 4Þ modes we find dephas-
ings of�0:14 (0.07) and�0:18 (0.09) rad, and normalized
amplitude differences of�6� 10�5 (4� 10�3) and�3�
10�4 (9� 10�3), for system I (system II). These dephas-
ings are comparable to those found for the ð‘;mÞ ¼ ð2; 2Þ
mode because in both frameworks the GW phase can be
computed directly from the orbital phase. As a conse-
quence, these comparisons are almost entirely governed
by the trajectories of the test particle. Finally, we find that
higher harmonics contribute significantly less to the signal-
to-noise ratio relative to the (2, 2) mode. In particular, we
computed the signal-to-noise ratio averaged over beam-
pattern functions with a noise spectral density that includes
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FIG. 1 (color online). Absolute value of the difference in the
Newtonian-normalized Teukolsky and EOB fluxes as a function
of orbital velocity. Calibrating the Padé or � flux improves the
agreement by orders of magnitude.
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white-dwarf confusion noise. Including up to ‘ ¼ 5 (‘ ¼
7) for system I (system II) guarantees a recovery of 97% of
the total signal-to-noise ratio, with the ‘ ¼ m modes
dominating.

Data analysis implications and discussion.—These re-
sults demonstrate that the EOB framework can model
EMRIs for LISA data analysis purposes, with the advan-
tage of allowing for the consistent inclusion of both dis-
sipative and conservative PN self-force terms. Such terms
also allow the construction of waveforms from
intermediate-mass ratio inspirals, where first-order BH
perturbation theory is expected to fail. The comparisons
made here, however, serve only as a proof of principle. One
must now generalize to more generic spinning EMRIs, and
to more complicated orbital geometries.

The EOB framework also allows us to provide, for the
first time, a metric-based estimate of the number of tem-
plates needed for EMRI systems in LISA data analysis
[23,30]. As a coherent 2-year integration in the search of
EMRIs is computationally prohibitive, a hierarchical
search that collects power from coherent searches of
shorter segments was proposed in [1]. The maximum seg-
ment length set by computational limits in such a hierarch-
ical search is estimated to be less than 2 months. For a 2-
month evolution, we estimate that one requires less than
107 EOB templates to cover the template bank with a
minimal match of 0.97 in the total mass range
ð105–106ÞM� and mass-ratio range (10�4–10�5).
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FIG. 2 (color online). Absolute value of the dephasing (left) and fractional amplitude difference (right) of the dominant GW (2, 2)
mode as a function of time in months. Again, with the introduction of calibrated higher-order terms, the differences are small even over
a full 2 yr coherent integration.
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