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ABSTRACT

Neutron stars are a remarkable marriage of Einstein’s theory of general relativity with nuclear physics. Their interiors harbor
extreme matter that cannot be probed in the laboratory. At such high densities and pressures, their cores may consist
predominantly of exotic matter such as free quarks or hyperons. Gravitational wave observations from the Laser Interferometer
Gravitational-wave Observatory (LIGO) and from other interferometers, and X-ray observations from the Neutron Star Interior
Composition Explorer (NICER), are beginning to pierce through the veil. These observations provide information about neutron
star cores, and therefore, about the physics that makes such objects possible. In this review, we discuss what we have learned
about the physics of neutron stars from gravitational wave and X-ray observations. We focus on what has been observed with
certainty and what should be observable in the near future, with an eye out for the physics that these new observations will
teach us.

Key points:

• The processes at play inside neutron stars encode general relativity, quantum mechanics, particle physics and nuclear
physics that cannot be replicated in the lab.

• Gravitational wave observations of binary neutron star mergers are beginning to provide information about the equation
of state of supranuclear matter through constraints on the tidal deformability of neutron stars.

• The X-rays emitted by hot spots on the surface of certain pulsars are beginning to provide information about nuclear
physics through constraints on the radius of neutron stars.

• Future observations of gravitational waves and X-rays from LIGO, Virgo, KAGRA and NICER will provide unprece-
dented insights into the physics of neutron stars.

Website summary: The observation of gravitational waves emitted in the merger of neutron stars and the observations of
X-rays emitted by hot spots on their surfaces are beginning to reveal nuclear physics insights about these compact objects.

1 The marvelous neutron star
Neutron stars are wonderfully marvelous. With masses comparable to our Sun’s, but radii of only approximately 12 km, they
are some of the most compact, and thus gravitationally powerful objects in the universe1. With monstrous magnetic fields2,
sometimes a trillion times stronger than that of a refrigerator magnet, they funnel photons into beams that travel astronomical
distances. With astounding rotation speeds that can reach up to hundreds of Hertz, rivaling professional kitchen blenders, they
whip these magnetic fields and beams around, creating astrophysical lighthouses. Every time the beams cross Earth, radio
telescopes record a pulse, and the counting of these pulses creates a clock. Neutron stars are, in fact, one of the most stable and
accurate clocks known in the natural universe because of their marvelously stable rotation rates3.

Neutron stars are also wonderfully unavoidable. A massive star is supported against gravity during most of its life by the
radiation force that it produces in the thermonuclear fusion of its component gases. The by-products of this reaction are ever
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heavier elements, and thus, at some point in the star’s lifetime, it is no longer energetically favorable to continue the burning
sequence. The massive star then sheds its outer layers in a supernova explosion, leaving behind an iron core that can no longer
burn, and thus can no longer prevent gravitational collapse. In the iron core goes, just as dictated by Einstein’s theory of general
relativity, and so if nothing came to the rescue, one would expect the formation of a black hole.

Neutron stars, however, are wonderfully quantum mechanical. As the iron core contracts, it becomes energetically favorable
for electrons and protons to combine to form neutrons and emit neutrinos via inverse beta decay. The iron core has now become
essentially a soup of neutrons, peppered of course with a few other particles. But neutrons are fermions, and this soup is so
dense that the distance between fermions becomes really small, forcing each neutron to feel the influence of its neighboring
neutrons. By the Pauli exclusion principle, this then leads to a very large (Fermi) momentum and energy, and thus, a very large
“degeneracy” pressure, whose gradient halts the collapse.

As a result, neutron stars are wonderfully dense. Although their atmospheres (which comprise only the few centimeters
closest to the surface) can have atoms (albeit possibly distorted into near-cylinders by the strong magnetic field), just a bit
deeper, matter is so dense that electrons do not belong to individual nuclei. At densities greater than ∼ 107 g cm−3, the Fermi
energy of electrons becomes high enough that the matter becomes progressively richer in neutrons4, which produces nuclei
such as 120Rb, which have 40 protons and 80 neutrons. At densities greater than 4× 1011 g cm−3 it becomes possible for
neutrons to “drip out” of the nucleus, which means that matter is a mix of free neutrons, free electrons, and nuclei. At even
higher densities, nuclei can cluster together to form “pasta-like” structures, such as one-dimensional strings (“spaghetti") or
two-dimensional surfaces (“lasagna"). Going in a bit deeper, at about “nuclear saturation density” (2.7×1014 g cm−3, so called
because it corresponds to the density at the center of large nuclei), there are no longer any isolated nuclei, and we now have the
neutron soup mentioned above, as shown in Fig. 1. Pushing to yet higher densities, it may be energetically favorable to form
other baryons with at least one strange quark, such as hyperons 5, 6, until eventually close to the center of the star, quarks may
become deconfined7 and one may encounter a degenerate quark-gluon plasma.

Figure 1. Cartoon structure of a neutron star and its internal structure.

Neutron stars are therefore wonderfully cool, but not just because they are physically interesting: they are also “cold.”
Imagine a neutron star composed of an immense number of fermions, which due to the Pauli exclusion principle must occupy
different energy states. The highest energy state, the Fermi energy, is therefore enormous, and one can think of these fermions
as forming a kind of “gas.” If so, you can associate an effective temperature to this gas, by dividing the Fermi energy by the
Boltzmann constant. This temperature turns out to be remarkably high, on the order of 1012 K, about 5 orders of magnitude
higher than the temperature at the center of the Sun. Therefore, even though isolated neutron stars are actually very hot in
terms of their actual temperature, which at their cores might typically be 108−1010 K, they are cold relative to their Fermi
temperature. Of course, when neutron stars are born, they can be significantly hotter; for example, proto-neutron stars can have
core temperatures of 1011 K. But such stars cool down very rapidly via neutrino emission, dropping by two orders of magnitude
in just a thousand years, which is an extremely short time scale by astronomical standards. Thus, unless one is observing their
birth, neutron stars are, for most purposes, cold objects relative to their Fermi temperature.

Although it may not seem so from the above description of their complicated structure, there are some ways in which
neutron stars are wonderfully simple. Many macroscopic aspects of neutron stars that have been or could be observed using
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electromagnetic radiation or gravitational waves, including their mass, radius, and tidal deformability, depend only on the
nature of gravity (here we assume general relativity) and the equation of state8, which determines the pressure given other
quantities such as the energy density, temperature, and composition. As argued above, the temperature is too low to make a
difference in isolated and “old” neutron stars, although temperature cannot be neglected in the merger of neutron stars. The
composition is usually assumed to be the equilibrium composition, because there is enough free energy to transition to the
ground state (unlike, say, at terrestrial densities, where 56Fe is the ground state of matter but there is insufficient energy to cause
fusion to guarantee that matter reaches that state). Other complications are also thought to be ignorable in the description of the
equation of state; for example, shear and bulk viscosity are believed to contribute negligibly to the equation of state (although
they may be relevant in the dynamics of the merger of neutron stars9). Thus, to an excellent approximation, in neutron star
cores the pressure depends only on the energy density, which is to say that the equation of state is barotropic.

What is the equation of state, and how can it be inferred from observations of neutron stars?

As indicated in the text, the equation of state represents a mapping between the pressure and other quantities, such as
the energy density, temperature, and composition. But in neutron stars, it is typically thought that in the core the pressure
p depends only on the energy density ε , so p = p(ε). To see how observations of neutron stars can help constrain the
equation of state, note that the equation of hydrostatic equilibrium, for nonrotating (and thus spherical) fluid stars in
general relativity, is the Tolman-Oppenheimer-Volkoff (TOV) equation1

d p
dr

=−Gm
r2 (ε/c2)

(
1+

p
ε

)(
1+

4πr3 p
mc2

)(
1− 2Gm

rc2

)−1

. (1)

Here r is the coordinate distance from the center of the star and m is the gravitational mass inside this radius, while G
is Newton’s gravitational constant and c is the speed of light. The quantity ε includes the rest-mass density, so in the
Newtonian limit where p� ε , ε is dominated by rest mass-energy ρc2. In this same limit, 2Gm/c2� r, so the above
equation reduces to the Newtonian hydrostatic equilibrium equation d p/dr =−ρ(Gm/r2). Given an equation of state
p(ε) and a central density εc, one can integrate this equation, combined with the continuity equation dm/dr = 4πr2ε/c2,
to find the (total) mass M and radius R of a star. In the Newtonian limit, larger εc guarantees larger M, but in general
relativity there is a central density εc,max beyond which further increase leads to lower M. This corresponds to an instability,
and means that in general relativity a given equation of state has a maximum stable mass. Thus, any measurement or
constraint on the mass and radius of a star (or other quantities such as the mass and tidal deformability of a star, or the
mass and moment of inertia of a star) can be compared with the predictions of a set of equations of state.

In these neutron star structure equations, however, there is no information about the composition of the core. Any
composition that yields a p(ε) that is consistent with observations will do. Thus, although observations of neutron star
mass, radius, tidal deformability, moment of inertia, etc. provide valuable constraints, they cannot by themselves tell
us whether the core is mainly neutrons, or hyperons, or free quarks, or something else. Some additional information
can in principle be obtained by measurements of the temperatures of neutron stars of a given age and mass (because
temperatures depend on transport properties that in turn have some dependence on composition) or about the gravitational
waves emitted in the (hot) merger of neutron star binaries. However, at this time, temperature and merger information is a
bit too uncertain or unavailable to provide strong and reliable constraints.

2 The equation of state puzzle
The problem is then “simple”: solve for the equation of state using many-body quantum mechanics and quantum chromody-
namics, and then use this in conjunction with the Einstein equations to predict the observable properties of the equation of state.
Unfortunately, this is easier said than done. The Einstein equations part is not the problem. In fact, it is relatively straightforward
to compute the observable properties of neutron stars in general relativity, once you are given an equation of state. The problem
is quantum mechanical, and relates to the “sign problem"10 present in quantum chromodynamics calculations at nonzero baryon
chemical potential. Although this theory has straightforwardly calculable predictions11 for matter at finite temperature and zero
net baryon density (i.e., matter with almost equal numbers of baryons and antibaryons), current numerical methods become
exponentially more costly when the net baryon density is large. As a result, it is not possible to compute the properties of
neutron star core matter using current first principles approaches.

For this reason, an abundance of models for the equation of state of matter at supranuclear densities and effectively zero
temperature have been put forth12. One approach is to solve quantum-chromodynamic-motivated models using the best
microphysics possible given the constraints of the sign problem, see e.g.13–16. Another is to assume that we know the equation
of state up to some threshold density (which is typically around nuclear saturation density) and then extrapolate to higher
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densities using some (often parameterized) one-dimensional function, such as a piecewise polynomial17. In this latter approach,
the aim is to use nuclear physics experiments and astrophysical observations to constrain this phenomenological function, and
then to study what the constraints imply for nuclear physics18.

The phenomenological nature of the second approach does not imply that interesting nuclear and particle physics is
unimportant. On the contrary, the interactions between nuclei, neutrons and quarks can greatly influence the functional form
of the equation of state, and therefore, both approaches attempt to include as much physics as possible. For example, if the
matter in the core of neutron stars transitions into deconfined quarks, then under certain circumstances it is possible for the
speed of sound of the fluid (the square root of the derivative of the pressure with respect to the energy density) to become very
small or zero19. This is called a first-order phase transition in the quantum chromodynamic phase diagram, which for old and
isolated neutron stars is two dimensional (pressure versus density or chemical potential only). The speed of sound also cannot
exceed the speed of light (the so-called “causal limit”), and at extremely high energy densities it is expected to approach square
root of one third the speed of light (the so-called “conformal limit”)20. The latter arises because at sufficiently high densities,
the particles’ energy is dominated by their Fermi momentum, so they can be treated effectively as a relativistic gas. It is not
currently known if the conformal limit applies at the densities expected inside the cores of neutron stars, or whether other phase
transitions may be present. The equation of state puzzle then may be solved through observations, since certain quantities
that are (directly or indirectly) observable are determined by the equation of state (see the box for more details). Equations of
state are sometimes called “stiff” or “hard" when the slope of the pressure-energy density curve is large. On the other hand,
a “soft" equation of state, for which the pressure increases slowly as the energy density increases, has a smaller maximum
mass. Equations of state that contain first-order phase transitions around nuclear saturation density allow for stars with similar
masses but different radii, which have been dubbed mass twins21. Figure 2 shows a schematic representation of stiff and soft
equations of state, and equations of state with first order phase transitions, together with their respective mass-radius curves.
Other interesting properties of nuclear/quark matter include heat capacity, superfluidity, viscosity, and shear modulus that may
be probed through cooling22, 23, glitches24, 25, and r-mode oscillations26, 27 of neutron stars. Other basic physics questions that
one could address through neutron star observations include the role of three-body forces and the threshold for the appearance
of hyperons (the “hyperon puzzle”).

Figure 2. Schematic representation of equations of state showing the square of the sound speed against baryon number
density normalized to nuclear saturation density (left) and their corresponding mass-radius curves for neutron stars (right).
Generally, stiff equations of state have larger sound speed, maximum mass and radius than soft ones. Equations of state with
first-order phase transition (energy densities at which c2

s = 0) can produce mass twins if they are large enough and if they occur
at densities around what is shown in the figure.
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3 A new dawn for nuclear astrophysics
Up until the 2010s, most astrophysical information about neutron stars came from observations of the light they emit. Perhaps
the best known of these are the radio pulses emitted by neutron stars in a binary orbit with another compact companion, such as
another neutron star or a white dwarf. The timing of these pulses allow the careful reconstruction of the binary orbits, including
relativistic effects, which earned Hulse and Taylor28 a Nobel Prize in Physics in 1993. Among the many wonders these binary
pulsars have revealed, what concerns us the most here is the inference of the masses of the binary companion. To date, the
heaviest neutron star with a well-measured mass is PSR J0740+6620 (where the numbers represent the location of the source in
the sky in astronomical notation) at m = 2.08±0.07 M�29. Since high neutron star masses can be compared with the maximum
mass predicted using different equations of state, the observation of PSR J074029 and similarly high-mass neutron stars30, 31

rules out equations of state that are too soft. Indeed, neutron star mass measurements based on radio timing have been, and
continue to be, a lynchpin for astronomical constraints on matter beyond nuclear density, because the data, analysis, and model
inferences are all well-understood.

A new window to the universe and to neutron stars opened in 2015 when the advanced Laser Interferometer Gravitational-
wave Observatory (or advanced LIGO for short) made the first direct detection of gravitational waves32. These waves are
perturbations to gravity predicted by Einstein and produced when massive objects accelerate. Because of the feebleness of
the gravitational force, a tremendous amount of mass has to accelerate to a tremendous degree for us to be able to observe
gravitational waves that originate a cosmological distance away from Earth. But this is exactly what happened on 14 September
2015. The GW150914 event (named after its discovery date) was shown to be produced by the merger of two black holes with
masses roughly 30 times that of our Sun, at velocities close to half the speed of light32. This single event announced the birth of
gravitational wave astrophysics.

Many discoveries have been made in gravitational waves since 201533, but the most exciting for us was made in 201734. On
August 17th of that year, advanced LIGO (and this time, also another gravitational wave detector called Virgo, too) detected
gravitational waves again, but this time the frequency at which the signal peaked was much higher than in 2015. For objects
such as black holes and neutron stars, whose radius R is just a few times Gm/c2, a higher frequency is a tell-tale sign of a
much lower-mass merger. This is because Kepler’s Third law tells us that the square of the orbital frequency, which is directly
proportional to the square of the gravitational wave frequency, scales linearly with the total mass of the binary and inversely with
the separation d cubed. Thus at merger, when d ∼ R∼ Gm/c2, the gravitational wave frequency is inversely proportional to the
binary’s total mass. A detailed analysis of the GW170817 event later revealed that it was likely produced by the coalescence of
two neutron stars, with masses of ∼ 1.3−1.4 M� at a mere 40 Mpc (i.e., 130 million light years) away from Earth34. On a
human scale, that is a ridiculous distance (astronomical in fact!), but to an astrophysicist, this is incredibly close (it corresponds
to a cosmological redshift of about 0.009.) The closer the event, the stronger the signal, so using this event it was possible for
the first time to extract information about the equation of state from gravitational waves.

But how do gravitational waves carry information about the equation of state? When two neutron stars spiral into each other
and collide, before the collision takes place they are tidally perturbed by each other’s gravitational field. Just like Earth acquires
a tidal bulge due to the Moon, inducing high and low tides in the ocean, when a neutron star gets close to another compact
object, it will tidally deform. This tidal deformation requires energy, and so the neutron star “borrows” it from the orbital
energy, therefore forcing the binary to spiral in faster than it would have otherwise. A speed up in the rate of inspiral directly
affects how the gravitational wave frequency changes with time, because, as we said before, the orbital and gravitational wave
frequencies are linearly related. Therefore, by carefully monitoring the evolution of the gravitational wave phase, one can
in principle extract information about how much the objects that produced the wave were tidally deformed on their way to
coalescence35, 36 (see Fig. 3).

This is exactly what the LIGO Scientific and Virgo collaborations measured from the GW170817 event34, 38, 39. The signal
to noise ratio was large enough that, from the gravitational wave data alone, a double neutron star merger in which both stars
had the same equation of state was somewhat preferred over other options, including two black holes (which is also strongly
disfavored by the subsequent electromagnetic emission) and one neutron star and one black hole. If the event involved a binary
neutron star system similar in its spins to those we observe in the Milky Way, then the probability distribution of the tidal
deformability for both stars peaks at a nonzero value and implies a radius between ∼ 10.5 km and ∼ 13.5 km for both stars, at
90% credibility38.

4 From gravitational waves to dense matter
But how on Earth do you constrain the radius of neutron stars from a measurement of the tidal effect on the gravitational waves
emitted? In very broad terms, there are essentially two approaches that have been pursued to do so.

The standard approach is to adopt some model for the equation of state17, 40–42 and then carry out Bayesian parameter
estimation. In general, all equation of state models contain some low-density part, which is then extrapolated in some specific
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Figure 3. Gravitational waveform from the last few cycles of a compact binary inspiral with (cyan solid) and without (black
dashed) the effect of tides. The former (latter) corresponds to waves generated by inspiraling black hole (neutron star) binaries
with vanishing (non-vanishing) tidal deformabilities. The waveform data is taken from37.

mathematical way to higher densities beyond some threshold density (which has been typically taken to be between half and
twice nuclear saturation density). One then employs standard Bayesian inference: for a given draw of the equation of state
model and two draws of the central densities, one predicts the masses of the binary companions and their tidal deformabilities,
and from this, the gravitational wave model that one compares to the gravitational wave data. Based on the relative likelihoods
of the various draws in the exploration of the likelihood surface, one can then obtain posterior distributions for the pressure
versus energy density, the mass versus radius, or other quantities.

The main caveat of this approach stems from the need to prescribe an equation of state model. Any given model will place
greater prior weight on some portions of equation of state parameter space than on others. For example, some models may
exclude the possibility of first-order phase transitions, whereas others might strongly emphasize them. Some models may
exclude wiggles, kinks and other crossover-type structure in the speed of sound, while others might focus on them. A reasonable
approach then is to use a few distinct models in the hope (which fortunately is more and more the reality) that the data are
informative enough that distinct but reasonable models lead to similar posteriors on the mass, radius and other observables.

Another complementary approach relies on relations (often called “universal relations") between neutron star properties that
are insensitive to the equation of state43. Particularly tight relations of this type include the so-called I-Love-Q relations44, 45

between the moment of inertia (I), the tidal deformability or Love number (Love) and the quadrupole moment (Q). For the
purpose of inferring the radius of neutron stars from gravitational wave data, the most important universal relation is the binary
Love one46, 47 (see48 for a similar relation), which relates the anti-symmetric combination of the tidal deformabilities to their
symmetric combination and the mass ratio of the binary, and the Love-C one43, 49, which relates the tidal deformability of a
star to its compactness. The binary Love relations can be used to effectively reduce the number of independent parameters
needed to describe the gravitational waveform, and thus, improve the precision with which the tidal deformabilities can be
measured46, 47, 50. With a posterior on the deformabilities, the Love-C relation then provides the compactness of each star,
which when combined with the gravitational wave measurement of the binary component masses, yields the radius of each star.

How do you use relations insensitive to the equation of state to learn about the latter?
And what is the Love number anyways?

Let us begin with the second question first. The Love numbers are a set of real numbers introduced by Augustus
Edward Hough Love in the 1900s to describe the Earth tides caused by the Moon. But of course one can study the tides of
any massive body caused by any external perturbation, including the tides of a neutron star due to its binary companion.
The Love numbers are proportional to the tidal deformability, which describes how much a star deforms in response to an
external perturbation51–53. More precisely, an external perturbation generically induces a redistribution of the isodensity
contours inside a massive body, which in turn can be described through mass and current multipole moments of the mass
distribution. The tidal deformabilities are then formally defined as the constants of proportionality that relate how much
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of a multipolar deformations is induced in a star M` due to an external tidal perturbation P`, i.e. M` = λ`P`.
The external perturbation can be of two classes (even or “electric” and odd or “magnetic” parity), depending on

how it transforms under parity. Each class, in turn, can be decomposed into multipole moments, with the leading-order
perturbation produced by the electric-type quadrupole tidal tensor Ei j. Given this, the tidal deformability can also be
classified and decomposed in an analogous manner, with the leading-order tidal deformability being the electric-type
quadrupole tidal deformability λE,`=2 or just λ for short. This deformability is then defined via the relation Qi j = λEi j,
where Qi j is the induced mass quadrupole moment. The calculation of any tidal deformability requires the solution to the
perturbed Einstein equations for a star that is being deformed by some “external universe,” such as a binary companion
sufficiently far away.

The tidal deformabilities of the neutron stars in a binary affect the gravitational waves they emit during their inspiral
because they modify the orbital energy and the rate of gravitational wave emission. For an equal-mass binary, the
tidal effect on the orbital energy changes the phase by 5.5 times as much as the tidal modification of the gravitational
wave emission rate to the leading post-Newtonian order, irrespective of the equation of state. As described in the
text, the tidal deformations modify the Hamiltonian of the binary system by adding a term of the form35, 54 δH ∝

U12(λ1/m5
1)(m1/m)3U5

12 +1→ 2, where U12 = Gm/r12 is the binary’s Newtonian potential, with m the total mass and
r12 the orbital separation, and λ1 is the electric-type, ` = 2 tidal deformability of star 1, which scales with its radius
to the fifth power. Since a binary system composed of tidally deformed stars has a larger (i.e., less negative) binary
binding energy, it takes less time for gravitational waves to drain this energy away, and for the binary to inspiral. Such a
modification in the inspiral orbital dynamics imprints directly on the gravitational waves emitted.

Gravitational wave detectors are more sensitive to the phase of the wave than its amplitude when one carries out param-
eter estimation by matched-filtering the data with a template model. Because the covariance matrix of the noise is diagonal
in the Fourier domain, one typically carries out matched-filtered parameter estimation in frequency space. The Fourier
transform of the waveform for inspiraling neutron stars contains the term35, 47 δΨ( f ) ∝

[
f (η)λ̄s +g(η)λ̄a

]
(πm f )10/3,

where f (η) and g(η) are functions of the symmetric mass ratio η = m1m2/m2, while λ̄s,a = (Λ1±Λ2)/2 are the non-
dimensional, symmetric and asymmetric combinations of the tidal deformabilities with ΛA ≡ λA/m5

A representing the
dimensionless tidal deformability for bodies A = (1,2). Extracting both combinations from the data from this single term
in the Fourier phase seems impossible due to degeneracies among them, but there are two ways out38.

One option is to choose an equation-of-state model to compute λ̄s,a as a function of the mass of the stars and determine
the posteriors for the parameters of the model equation of state and the central densities by comparing to the data. Another
option is to use equation-of-state insensitive relations. In the latter approach, one uses the binary Love relations46, 47 to
prescribe λ̄a in terms of λ̄s analytically, thus making δΨ( f ) a function of only one λ̄s and η . One can then carry out
parameter estimation to extract both λ̄s and η (because the symmetric mass ratio also appears in other terms of the Fourier
phase independent of the tidal deformabilities). Once λ̄s has been extracted, one can then use the binary Love relations
again to extract λ̄a, and from knowledge of both of these combinations one can trivially extract both λ1 and λ2, without
ever choosing an equation-of-state model.

A caveat of this approach is that for the binary Love relation to apply, the two neutron stars in a binary must both be on the
primary stable branch; for example, the relation is inapplicable for twin stars if one star is on one stable branch and the other is
on a different, higher-density stable branch55. Care also needs to be applied when using the binary Love relation to place lower
bounds on the tidal deformability, because these lower bounds can be below what is realistic for neutron stars and therefore
may be outside the region in which the binary Love relations are valid56.

Both approaches have been applied by the LIGO/Virgo Collaborations on GW17081738 and the posteriors of the mass and
radius are shown in Fig. 4 (see also Ref.48 for related work). Not surprisingly, both approaches lead to consistent posteriors in
the mass-radius plane in the sense that the 50% credible regions overlap between the two analyses, suggesting that indeed the
data is more informative than any systematic error incurred in the modeling.

5 The power of coincidence
But there is more! The double neutron star coalescence GW170817, which we recall occurred just 40 Mpc away, had
counterparts over the entire electromagnetic spectrum58. Gamma rays indicative of a gamma-ray burst observed ∼ 20−30◦

off-axis were seen just ∼ 1.7 seconds after the peak of the gravitational wave event. This was followed by ultraviolet through
infrared emission over hours to weeks, with X-rays first detected nine days after the initial event and radio waves visible even
now.

The overall picture is consistent with predictions made prior to the event, in which the energy released by the coalescence
of the neutron stars emerges in multiple forms: (1) gravitational waves, (2) a short gamma-ray burst (in which the gamma
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Figure 4. Posterior for the mass and radius of each (blue and orange) components of the binary system that generated
GW170817, using a parametrized equation-of-state model (left panel) and the universal-relations method (right panel). The
solid and dashed boundaries in each panel correspond to the 90% and the 50% credible region. A few mass-radius curves are
overplotted in gray for comparison. The solid lines of the top left represent a non-rotating black hole, whose radius is twice its
mass (times G/c2 for unit consistency), and the so-called Buchdahl limit57 (ie. the maximum gravitational compactness that
static and spherically-symmetric matter configurations must satisfy in general relativity under certain conditions on the energy
and pressure). This figure is taken from Ref.38.

rays are produced by a blast wave moving with a Lorentz factor of at least hundreds), and (3) far more prolonged emission
produced by the quasi-spherical, and much slower (v∼ 0.01−0.1c) outflow of unbound matter that was in the neutron stars
(where the radiated energy comes from the decay of heavy radioactive nuclei). This last component, which might have had
∼ 0.01−0.1 M� in total mass, has been dubbed a “kilonova" or “macronova"59. The highly neutron-rich outflow is thought to
produce heavy elements, such as lanthanides and actinides, with high efficiency; thus, double neutron star mergers, and possibly
mergers between black holes and neutron stars, could produce most of the heavy elements in the universe.

GW170817 and events like it provide us with ways to place an upper limit on the maximum mass Mmax of a non-rotating
neutron star, albeit with astrophysical caveats60–63. The argument is that if after the merger of two neutron stars the remnant is
a long-lived and rapidly rotating neutron star, then if the process of merger generated a strong magnetic field the star would
slow down rapidly by magnetic braking. This would then inject a large fraction of the ∼ 1052 erg rotational energy into the
afterglow and kilonova. This excess energy is not observed in GW170817, which suggests that instead the merger remnant
rapidly collapsed to a black hole. As a result, the total mass of the binary had to be larger than what can be supported by
a rigidly rotating neutron star, and thus the maximum mass is bounded from above. The caveats are that there is no direct
evidence for the formation of a black hole (as there would be if the gravitational wave data were many times more precise than
they were), and the production of magnetic fields to slow the star’s rotation is highly uncertain.

Nonetheless, under these assumptions, the estimated total mass of the double neutron star binary and the assumption that the
remnant collapsed quickly imply that Mmax for a nonrotating neutron star is less than ∼ 2.2 M�; note that this relies on a fairly
well-understood translation between the maximum mass of a rotating neutron star, such as is formed in the merger, and the
maximum mass of a nonrotating star. Detailed numerical models of the outflow as inferred from electromagnetic observations
yield similar answers, with implied values for Mmax in the range ∼ 2.2−2.3 M�64–66.

If these upper limits are reliable, then, in concert with the existence of a few∼ 2 M� neutron stars, they provide a remarkably
tight constraint on Mmax: just ∼ 2− 2.3 M� to be conservative. This would eliminate both soft equations of state (which
have Mmax < 2 M�) and hard equations of state (which have Mmax > 2.3 M�), therefore cutting down considerably on viable
descriptions of the dense matter inside neutron stars. The most important addition to this information is independent, reliable
and precise measurements of neutron star radii, which we now discuss.
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6 A NICER way to nuclear astrophysics
Precise neutron star radii have long been coveted by nuclear physicists, because they would arguably discriminate between
different equation of state models better than any other single measurement. As a result, numerous radii have been reported over
the years, usually focused on X-ray observations of spectra integrated over many neutron star rotation periods. It has, however,
become evident that this method is susceptible to potentially serious systematic errors. For example, the X-ray emission from
a typical cooling neutron star without pulsations can be fit equally well using a pure hydrogen atmosphere, a pure helium
atmosphere, and even a black body spectrum (although neutron stars do not emit as black bodies). Despite the equally good fits,
the inferred radii differ dramatically depending on the assumptions; for example, hydrogen and helium atmospheres can give
radii that differ by as much as 50%. Thus, even if the formal statistical precision of the radius measurement is excellent, the
reliability may not be.

The Neutron star Interior Composition Explorer (NICER) adds a new dimension to the X-ray observations. In additional
to its other observing tasks, NICER has been pointed at a small set of non-accreting pulsars for more than a million seconds
each. These pulsars have X-ray emitting “hot spots" rotating with the star on the stellar surface that are believed to be produced
by the impact of high Lorentz factor electrons and positrons on the surface, which are generated as part of the process that
produces radio pulsar emission. NICER records the arrival time of each photon to better than 100 nanosecond accuracy, which
is much shorter than the ∼few millisecond rotational periods of these pulsars. The data can therefore be considered as spectra
as a function of rotational phase, which is why it is sometimes referred to as time-resolved X-ray spectroscopy. Although more
studies need to be performed, existing work suggests that when rotational phase information as well as spectra are obtained,
then if the fit to the data is statistically good, the inferred radius and mass will not be significantly biased. For example,
although the models of the shape and temperature distribution of hot spots cannot be perfectly correct, use of such models will
either (1) produce a statistically poor fit, which then motivates the development of better models prior to radius inference, or
(2) produce a statistically good fit, in which case the inferred radius and mass can provisionally be accepted to be reliable as
well as precise.

Like inference from LIGO data, inference of the radius from NICER data proceeds along standard Bayesian lines: given
a model for the time-dependent spectra with parameters and associated priors (e.g., the mass, radius, spot shapes, locations,
and temperatures, and the observer inclination angle), the NICER team determines the likelihood of the data given the model
with specific parameter values, and iterates using a sampler until they obtain the posterior. Different parameters affect the
phase-dependent spectra in ways that can be partially degenerate. For example, weak modulation could be produced by a very
small spot (whose flux might be less than the background flux), or a spot that covers almost the entire star, or a spot nearly
centered on the rotational pole, or an observer inclination nearly aligned with the rotational pole. However, with the hundreds
of thousands of counts obtained in NICER observations, these degeneracies can be broken.

At present, two independent groups within the NICER team have inferred the mass and radius of two pulsars: PSR J0300+0451
and PSR J0740+6620. The first one is an isolated pulsar (which, being isolated, does not have an independently measured mass)
that spins at a frequency of 205.53 Hz. For PSR J0030+0451 the teams reported a mass of≈ 1.4 M� and 68.3% credible regions
on the radius of 12.0−14.3 km (Miller et al. 201967; see the left panel of Figure 5) and 11.5−13.9 km (Riley et al. 201969).
The teams also found very similar hot spot locations and shapes. These radii are compatible with the 90% credibility radius
upper bound of ∼ 13.5 km found from GW170817, which contained two neutron stars which also had masses ∼ 1.3−1.4 M�.

The second pulsar, PSR J0740+6620, spins at 346.53 Hz and is ∼ 20× fainter in X-rays than PSR J0300+0451, but it is in a
binary system, so one possesses independent measurements of the mass and observer inclination angle from radio observations.
The Green Bank and CHIME radio telescopes have inferred a mass of M = 2.08±0.07 M� and an observer inclination to the
binary orbital axis of θobs ≈ 87.5◦. The inclusion of this independent information is crucial to obtain a good measurement of
the neutron star radius. In addition, XMM-Newton data for this pulsar produced a more precise estimate of the pulsar X-ray
flux than was possible using NICER alone, given the low flux of the pulsar and the comparatively high X-ray background in
NICER observations. Combining the NICER, the XMM-Newton, and the radio data, the two teams reported 68.3% credible
regions on the radius of 12.2−16.3 km (Miller et al. 202168; see the right panel of Figure 5) and 11.4−13.7 km (Riley et
al. 202170). The difference in the credible regions is primarily due to the use of different statistical samplers and different
assumptions about the cross-calibration between NICER and XMM-Newton.

The net result of the NICER measurements is that the radii of ∼ 1.4 M� and ∼ 2.1 M� neutron stars are not very different
from each other (indeed, they are consistent with being the same), with both being on the order of 12−14 km. This implies a
relatively hard equation of state, with a maximum mass sufficiently above the ∼ 2.1 M� mass of PSR J0740+6620 that the
radius has not yet bent toward smaller values (which is characteristic of the mass-radius curve near the maximum mass). The
tidal deformability measurement for GW170817 eliminates the hardest equations of state, so together NICER and gravitational
wave measurements have significantly narrowed the plausible list of candidates for the high-density equation of state.
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Figure 5. Left panel: posterior probability density for the mass and radius of the isolated neutron star PSR J0030+0451 using
only NICER X-ray data (original figure from67). Right panel: posterior probability density for the mass and radius of the binary
neutron star PSR J0740+6620, using NICER and XMM-Newton X-ray data as well as Green Bank and CHIME radio data
(original figure from68). These results, and the consistent results from the independent analyses of69 and70, imply that the
radius of a neutron star is roughly constant from ∼ 1.4 M� to ∼ 2.1 M�, and thus that matter in the core of neutron stars has
relatively high pressure.

7 The beauty of future dreams
In the last 6 years, we have gone from living in a metaphorical data desert, with only a handful of gravitational wave observations,
to living in a metaphorical data forest, with over 50 observations and counting. Clearly, gravitational wave astrophysics is here
to stay, and we have only but began to explore this forest. The fourth observing (O4) run of the LIGO and Virgo detectors,
which is expected to reach design sensitivity, is scheduled to start in 2022, and the fifth observing (O5) run, which is expected
to reach even better sensitivities, will start a few years later. The observing range for O4 will be about 50%–90% larger than
that of O3, and the range for O5 is expected to be three times larger than that of O3. Since at the low redshifts relevant for
double neutron star observations the accessible volume scales with the cube of the observing range, one can expect many, many
more observations of binary black holes, binary neutron stars and mixed binaries, perhaps even in the hundreds by the time of
O5 in just 1 year of data. By the mid-2030s, third generation ground-based detectors such as the Einstein Telescope and the
Cosmic explorer will improve sensitivity by an additional factor of 10−20.

What will the advent of such an increase in sensitivity do for us? As we expect to detect many more events, we in particular
expect more binary neutron star observations. The low signal-to-noise ratio binary neutron star events may be too far away to
lead to an electromagnetic counterpart, but if some of these mergers occur close to the Milky Way (say at tens of Mpc), then
there is a good chance of a GW170817 repeat. This time, however, since the gravitational wave sensitivity will be significantly
larger, the signal-to-noise ratio for an event at 40Mpc could be three times larger than that of GW170817, and thus, close to
100. Such a high signal-to-noise ratio gravitational wave event would inaugurate the era of precision gravitational wave nuclear
astrophysics, since it would allow for a much more accurate measurement of the tidal deformabilities, and thus of the radius of
neutron stars. In fact, for such a loud event, not only could one extract nuclear physics information from the inspiral phase of
the event, but one may also be able to extract information from the merger and post-merger itself, which may be useful to probe
e.g. the presence of a quark matter core inside hybrid stars71.

Meanwhile, NICER observations will continue, and in particular, more and more data will be accumulated of the (soon to
be) three pulsars that have already been observed. In fact, in 2022 the NICER team is expected to publish the measurement of
the radius of the third pulsar, and to update the estimated radii of PSR J0030+0451 and PSR J0740+6620 using new data and a
better characterization of the instrument. These measurements will improve the precision of our knowledge of the sizes of
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neutron stars over a factor of 1.5 in mass, which will therefore yield additional valuable information about the equation of
state of matter beyond nuclear density and the existence of quark matter72 inside neutron star cores. Beyond NICER there are
numerous planned and proposed facilities and missions that will extend our reach greatly: these include radio observatories
(the Square Kilometer Array and the next generation Very Large Array) and numerous X-ray missions (such as Athena, the
enhanced X-ray Timing and Polarimetry mission [eXTP], and STROBE−X), which can probe the masses, radii, moments of
inertia, and cooling properties of neutron stars.

Whatever the future may hold, what is clear is that the combination of information from electromagnetic and gravitational
wave observations is revealing the states of matter that are realized in the cores of neutron stars, at wonderfully large pressures
and densities. In fact, it is not unreasonable to wager that within the next 10 years, the equation of state of matter at a few times
nuclear saturation density will be, for the first time, constrained to better than 10% in the low-temperature neutron star region of
the quantum chromodynamics phase space. The challenge now and in the near future will be to find ever more creative ways to
connect these observations to fundamental nuclear physics. The future, is thus, beautifully exciting.
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