TODAY

KIRCHOFF'S LAWS

EMISSION AND ABSORPTION

STELLAR SPECTRA & COMPOSITION

Spectra of astrophysical objects are usually combinations of these three basic types.

Kirchoff's Laws

- Hot, dense objects emit a
 - continuous spectrum e.g., a light bulb
 - light of all colors & wavelengths
 - follows thermal distribution
 - obeys Wien's & Stefan-Boltzmann Laws.
- Hot, diffuse gas emits light only at specific wavelengths.
 - emission line spectrum
- e.g., a neon light
- A cool gas obscuring a continuum source will absorb specific wavelengths
 - **absorption line spectrum** e.g., a star

Continuous Spectrum

• The spectrum of a common (incandescent) light bulb spans all visible wavelengths, without interruption.

Kirchoff's Laws

- Hot, dense objects emit a
 - continuous spectrum e.g., a light bulb
 - light of all colors & wavelengths
 - follows thermal distribution
 - obeys Wien's & Stefan-Boltzmann Laws.
- Hot, diffuse gas emits light only at specific wavelengths.
 - emission line spectrum
- e.g., a neon light
- A cool gas obscuring a continuum source will absorb specific wavelengths
 - **absorption line spectrum** e.g., a star ₅

Emission Line Spectrum

• A thin or low-density cloud of gas emits light only at specific wavelengths that depend on its composition and temperature, producing a spectrum with bright emission lines.

Kirchoff's Laws

- Hot, dense objects emit a
 - continuous spectrum e.g., a light bulb
 - light of all colors & wavelengths
 - follows thermal distribution
 - obeys Wien's & Stefan-Boltzmann Laws.
- Hot, diffuse gas emits light only at specific wavelengths.
 - emission line spectrum ^{e.g.,}
- e.g., a neon light
- A cool gas obscuring a continuum source will absorb specific wavelengths
 - **absorption line spectrum** e.g., a star $_{7}$

Absorption Line Spectrum

• A cloud of gas between us and a light bulb can absorb light of specific wavelengths, leaving dark absorption lines in the spectrum.

How does light tell us what makes up things?

© 2007 Pearson Education Inc., publishing as Pearson Addison-Wesley

Atomic Terminology

- Atomic Number = # of protons in nucleus
- Atomic Mass Number = # of protons + neutrons

© 2007 Pearson Education Inc., publishing as Pearson Addison-Wesley

Atomic Terminology

 Isotope: same # of protons but different # of neutrons (⁴He, ³He)

• Molecules: consist of two or more atoms (H_2O, CO_2)

- Each type of atom has a unique set of energy levels.
- Each transition corresponds to a unique photon energy, frequency, and wavelength.

Possible Electron orbits

Atoms can absorb photons with those same energies, so upward transitions produce absorption lines.

© 2007 Pearson Education Inc., publishing as Pearson Addison-Wesley

© 2006 Pearson Education, Inc., publishing as Addison Wesley

• Each type of atom has a unique spectral fingerprint.

• Observing the fingerprints in a spectrum tells us which kinds of atoms are present.

N2-02/IntroToSpectroscopy

19

Example: Solar Spectrum

All the dark regions are absorption lines due to all the elements in the sun's atmosphere. The strengths of the lines tell us about the sun's composition and other physical properties. Composition of the Sun Most of the lines in the solar spectrum are from heavy elements such as oxygen and carbon. This means:

A. The Sun is mainly made of heavy stuff

- B. Most of the lines are actually from Earth's atmosphere
- C. Light stuff (H, He) has its electrons stripped off, so no lines

D. Just the outer layers of the Sun are made of heavy stuff

E.I don't know

1 H Hydrogen	Periodic Table of the Elements															2 He Helium	
3 Li	4 Be											5 B	° c	7 N	80	9 F	10 Ne
11 Na Sodium	12 Mg Magnesium						13 Aluminum	14 Silicon	15 P Phosphorus	16 S Sulfur	17 Cl Chlorine	18 Ar Argon					
19 K Potassium	20 Ca Calcium	21 Sc Scandium	22 Ti Titanium	23 V Vanadium	24 Cr Chromium	25 Mn Manganese	26 Fe Iron	27 Co Cobalt	28 Ni Nickel	29 Cu Copper	30 Zn Zinc	31 Ga Gallium	32 Ge Germanium	33 As Arsenic	34 Se Selenium	35 Br Bromine	36 Kr Krypton
37 Rb Rubidium	38 Sr Strontium	39 Y Yttrium	40 Zr Zirconium	41 Nb Niobium	42 Mo Molybdenum	43 Tc Technetium	44 Ru Ruthenium	45 Rh Rhodium	46 Pd Palladium	47 Ag Silver	48 Cd Cadmium	49 In Indium	50 Sn Tin	51 Sb Antimony	52 Te Tellurium	53 Iodine	54 Xe Xenon
55 Cs Cesium	56 Ba Barium	71 Lu Lutetium	72 Hf Hafnium	73 Ta Tantalum	74 W Tungsten	75 Re Rhenium	76 Os Osmium	77 Ir Iridium	78 Pt Platinum	79 Au _{Gold}	80 Hg Mercury	81 Tİ Thallium	82 Pb Lead	83 Bi Bismuth	84 Po Polonium	85 At Astatine	86 Rn Radon
87 Fr Francium	88 Ra Radium	103 Lr Lawrencium	104 Rf Rutherfordium	105 Db Dubnium	106 Sg Seaborgium	107 Bh Bohrium	108 Hs Hassium	109 Mt Meitnerium	110 Ds Darmstadtium	111	112	113	114	115	116	117	118
		N															
				57 La Lanthanum	58 Ce Cerium	59 Pr Praseodymium	60 Nd Neodymium	61 Pm Promethium	62 Sm Samarium	63 Eu Europium	64 Gd Gadolinium	65 Tb Terbium	66 Dy Dysprosium	67 Ho Holmium	68 Er Erbium	69 Tm Thulium	70 Yb Ytterbium
			/	89 Ac Actinium	90 Th Thorium	91 Pa Protactinium	92 U Uranium	93 Np Neptunium	94 Pu Plutonium	95 Am Americium	96 Cm Curium	97 Bk Berkelium	98 Cf Californium	99 Es Einsteinium	100 Fm Fermium	101 Md Mendelevium	102 No Nobelium
			22														

© 2007 Pearson Education Inc., publishing as Pearson Addison-Wesley

Of all objects, the planets are those which appear to us under the least varied aspect. We see how we may determine their forms, their distances, their bulk, and their motions, but we can never known anything of their chemical or mineralogical structure Auguste Comte, 1842

Solar composition

- 73% Hydrogen
- 25% Helium
- 2% everything else
 "metals"

- Other stars similar
 - H & He most common stuff in the universe
 - Helium was *discovered* in the spectrum of the sun

• By carefully studying the features in a spectrum, we can learn a great deal about the object that created it.

MysteryGasComposition

Reflected Sunlight: Continuous spectrum of visible light is like the Sun's except that some of the blue light has been absorbed—object must look red

© 2007 Pearson Education Inc., publishing as Pearson Addison-Wesley

Molecules in space!

Molecules have sigs as well, typically at longer wavelengths.

More than 160(!!) different molecules have been found in space.

Notables: water, alcohol, glycine (simplest amino acid)

31