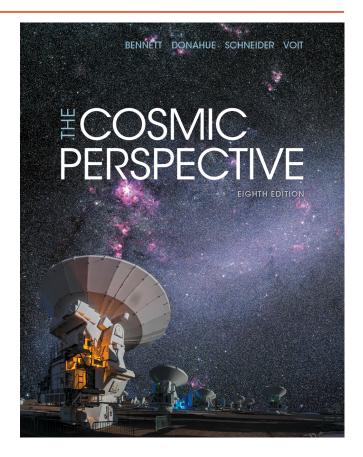
[16] Planetary Meteorology (10/24/17)

Upcoming Items

- 1. Homework #7 due now.
- 2. Homework #8 due in one week.
- 3. Midterm #2 on Nov 7
- Read pages 239-240 (magnetic fields) and Ch. 10.6 by next class and do the self-study quizzes.


https://3c1703fe8d.site.internapcdn.net/newman/ csz/news/800/2016/2-studypinpoin.jpg

LEARNING GOALS

Chapters 10.1–10.2

For this class, you should be able to...

- ... understand the effects of an atmosphere on a planet;
- ... understand hydrostatic equilibrium;
- ... determine whether a planet will retain a particular gas for at least 1 Gyr given properties of the planet and star.

Changes Based on Feedback

- Thanks for your feedback on Friday! Very helpful.
- Most of you seem to be enjoying the class; that's good to hear
- Some think the class is too hard
 A surprising number think the class is too *easy* But I don't plan to make it *more* challenging
- Many noted the extra time spent in doing HW online
- Okay, you can submit a scan, or turn in HW in person, but:
 1. HW in person must be by 11:00:00, or point penalty
 2. If scanned or written HW can't be read by Drew, he can and will take significant points off; HW must be legible!
 3. You can still turn HW in online as before

Any astro questions?

Group Q: Effects of Atmospheres

 With your group, list as many distinct effects of atmospheres as possible

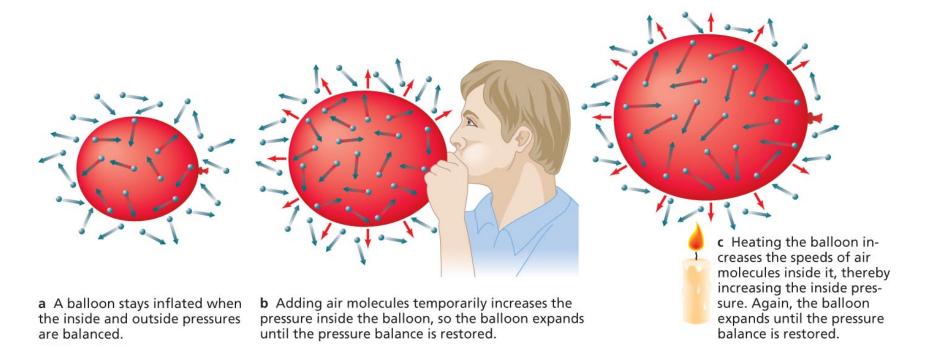
Effects of Atmospheres

- They create pressure that determines whether liquid water can exist on surface.
- They absorb and scatter light Shield against energetic radiation and particles!
- They create wind, weather, and climate.
- They interact with the solar wind and the planet's magnetic field to create aurorae.
- They can make planetary surfaces warmer through the greenhouse effect.

What is an atmosphere?

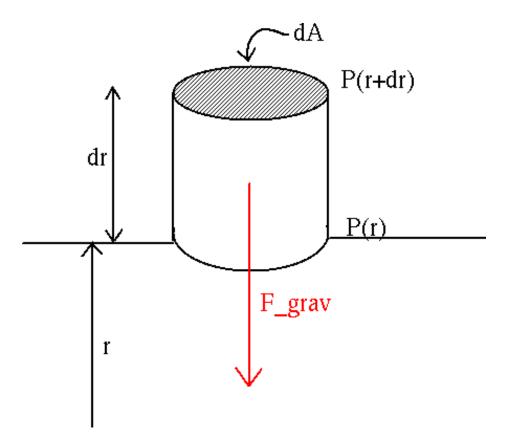
• An atmosphere is a layer of gas that surrounds a world.

Earth's Atmosphere

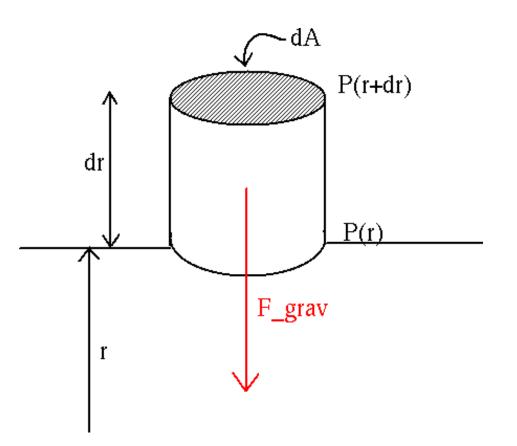

• About 10 km thick.

8

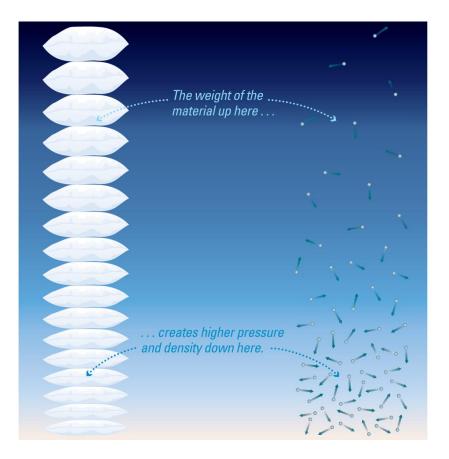
- Consists mostly of molecular nitrogen (N₂) & oxygen (O₂).
- Why doesn't it go higher?


Education, Inc

Atmospheric Pressure


Hydrostatic Equilibrium

- Why doesn't the atmosphere fall down?
- Put another way, what force on the atmosphere opposes gravity?



Hydrostatic Equilibrium

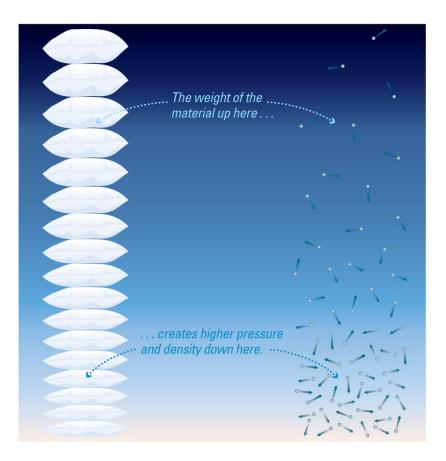
- Why doesn't the atmosphere fall down?
- Put another way, what force on the atmosphere opposes gravity?
- The answer is *pressure* gradients
 Pressure below is greater than pressure above
- Thus pressure force is up, which opposes gravity's pull down

Atmospheric Pressure

- Pressure and density decrease with altitude because the weight of overlying layers is less.
- Earth's atmospheric pressure at sea level is:
 - 1.01×10⁵ N/m² (101.325 kPa).
 - 14.7 lb per sq. inch.
 - 1.01 bar.

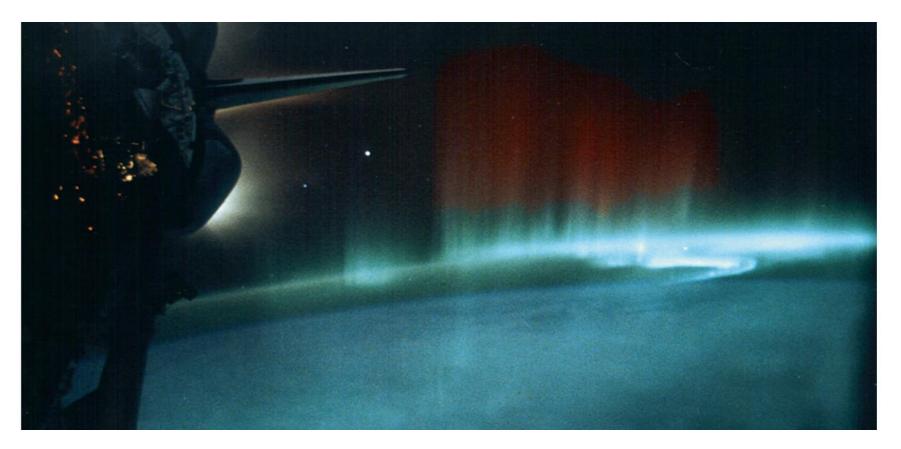
Equation of Hydrostatic Equilibrium

- Suppose the pressure is a function of the height, which we represent by r
- Let the density be $\rho,$ and the gravitational acceleration be g
- Then the balance between the gravitational force and the force from the pressure gradient is encapsulated in the *equation of hydrostatic equilibrium*


$dP/dr = -\rho g$

- The derivation of this equation is on the ELMS page (look in "Files", "derivations", "hydrostatic")
 You are responsible for reading and understanding, i.e., in homework or exams I might assume you know this
- What questions do you have about the meaning of the eqn?

Thinking about it...


• Will hydrostatic equilibrium principles also apply to water, rock, etc., or should it just apply to the atmosphere?

Where does an atmosphere end?

- There is no clear upper boundary.
- Most of Earth's gas is less than 10 km from surface, but small amount extends to more than 100 km.
- Altitudes above 100 km are considered "space."

Where does an atmosphere end?

 Small amounts of gas are present even above 300 km (interplanetary medium).

Estimating the Pressure Profile

For an idealized atmosphere,

$$P(r) \cong P_0 e^{-r/H}$$

where

- r = altitude (m)
- P_0 = pressure at "sea" level (Pa)
- *H* = *kT/mg* = scale height (m)
- *T* = temperature, assumed constant (Kelvin)
- *m* = mean molecular mass of atmospheric constituents (kg)
- $g = \text{surface gravity } (\text{m/s}^2).$
- For Earth, $P_0 = 1$ atm, $H \sim 8$ km.
- Derivation of pressure profile: ELMS->"Files"-> "derivations"->"exponential"

- Illustration of brightness scaled by albedo:
 - Enceladus 99%.
 - Earth 31%.
 - Moon 14%.
 - Comet 5%.

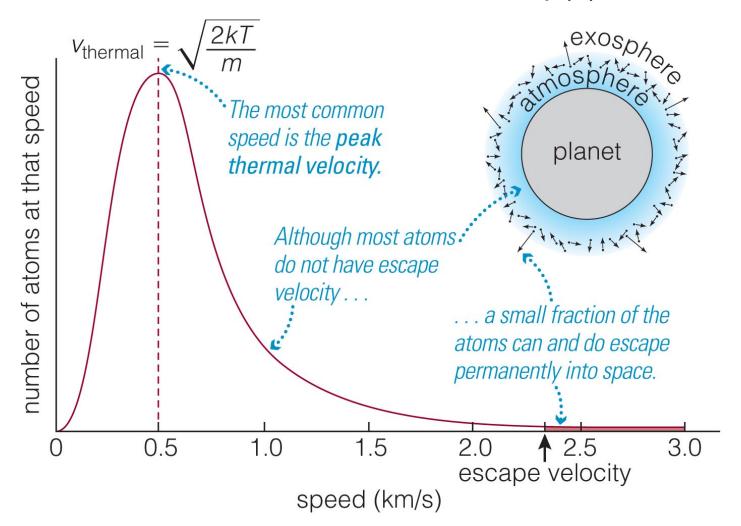
We will use α to represent albedo

Equilibrium Temperature and Thermal Escape

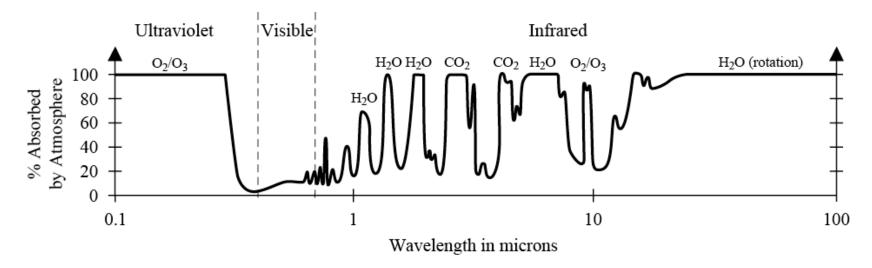
• Recall the temperature *T* of a gas is related to the <u>mean</u> <u>speed</u> v_{th} of its constituents. In 1-D,

$$\frac{1}{2}mv_{\text{th}}^2 = k_B T$$
, so $v_{\text{th}} = \sqrt{\frac{2k_B T}{m}}$ (*m* = particle mass).

• The gas temperature will be approximately equal to the equilibrium temperature T_{eq} of the planet, given at dist d by

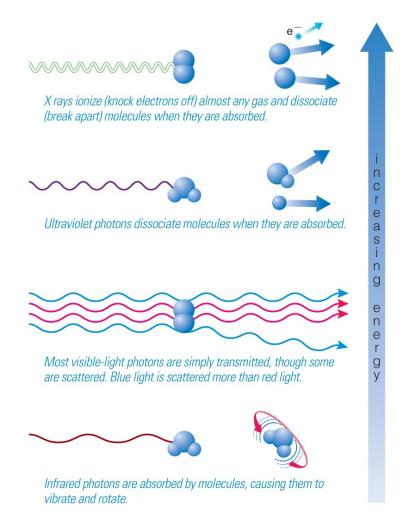

$$T_{\rm eq} = \left[\frac{L(1-\alpha)}{16\pi\sigma d^2}\right]^{1/2}$$

Gas with constituents of mass m will be <u>lost</u> in ~1 Gyr if


$$v_{\text{th}} \ge \frac{v_{\text{esc}}}{5}$$
 (approximately), where $v_{\text{esc}} = \sqrt{\frac{2GM}{R}}$ for the planet.

Thermal Escape

Prob(v given T)~ v^2 exp(-m $v^2/2kT$); remember, exp(x) means e^x

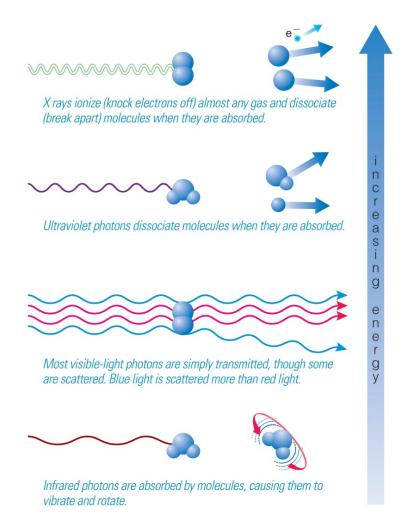


Atmospheric Absorption

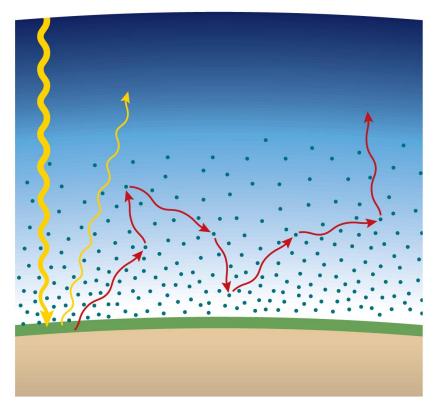
 Recall, molecules in Earth's atmosphere absorb certain energies of light from the Sun and re-emit them in random directions.

Light's Effects on Atmosphere

- *Ionization*: removal of an electron.
- *Dissociation*: destruction of a molecule.
- *Scattering*: change in photon's direction.
- *Absorption*: photon's energy is absorbed.


Why is the Sky Blue?

- And why are sunsets red?
- Same reason! Molecules scatter blue light much more easily than red light
- Thus away from the Sun, we get mainly blue light
- When the light goes through a lot of atmosphere (sunset), all blue has been scattered away
- Very important astronomical application; when we see a star through dust, it looks redder Then, want to use IR, not opt


http://2.bp.blogspot.com/-SR7wwPTeLE4/TyG2wVZbZqI/AAAAAAAACog/ EEoQB6ImNIc/s1600/beaches-blue-sky.jpeg

Light's Effects on Atmosphere

- X rays and UV light can ionize and dissociate molecules [heating].
- Air molecules scatter blue light more than red [color].
- Molecules can absorb infrared light [heating].

Greenhouse Effect

Strongest greenhouse gases:

- 1. Water vapor
- 2. Carbon dioxide
- 3. Methane

- Visible light passes through the atmosphere and warms a planet's surface.
- The warm surface emits infrared light (IR).
- Greenhouse gases absorb and re-emit IR, sending some back toward Earth's surface, making it hotter than it would be otherwise.

Atmospheric Temperature and the Greenhouse Effect

- Recall atmospheres transmit and absorb different wavelength ranges of light.
- <u>Absorption</u> causes heating.
 - *Thermosphere*: X rays and UV ionize and dissociate gases.
 - *Stratosphere*: On Earth, UV absorbed by O₂ and ozone (O₃).
 - *Troposphere*: IR absorbed by molecules like H₂O, CO₂, CH₄.
- The <u>greenhouse effect</u> is caused by the atmosphere absorbing IR from the planetary surface and sending some of that energy back down to the surface.
 - Surface heated originally by incoming sunlight that is not reflected.
 - The surface is too cold to emit visible light, but it does emit IR.