[05] Life as a Low-mass Star (2/8/18)

Upcoming Items

- 1. Read Ch. 17.3–17.4 for next class and do the self-study quizzes.
- 2. Homework #1 due next class.
- 3. How many of you read virial.pdf since the last class?

APOD 2/8/17: Butterfly Nebula

1

LEARNING GOALS

For this class, you should be able to...

- ... estimate stellar lifetime given available fuel and burn efficiency, or using the stellar mass-luminosity relation;
- ... predict the life track of a low-mass star on an H-R diagram given the processes that define its evolutionary stages, and explain why these stages occur;

BENNETT DONAHUE SCHNEIDER VOIT *ECOSMIC* PERSPECTIVE

Ch. 17.1–17.2

Any astro questions?

In-Class Quiz

1. What happens when a star can no longer fuse hydrogen to helium in its core?

- A. The core cools off.
- B. The core shrinks and heats up.
- C. The core expands and heats up.
- D. Helium fusion begins immediately.

2. Roughly how much shorter lived is a 16 M_{\odot} star compared to a 1 M_{\odot} star?

- A. 10 times.
- B. 100 times.
- C. 1,000 times.
- D. 10,000 times.

Hint: $\tau \propto M^{-2.5}$.

In-Class Quiz

1. What happens when a star can no longer fuse hydrogen to helium in its core?

- A. The core cools off.
- B. The core shrinks and heats up.
- C. The core expands and heats up.
- D. Helium fusion begins immediately.

2. Roughly how much shorter lived is a 16 M_{\odot} star compared to a 1 M_{\odot} star?

- A. 10 times.
- B. 100 times.
- c. 1,000 times.
- D. 10,000 times.

Hint:
$$\tau \propto M^{-2.5}$$
.

The destiny of a star

- Seen from a distance, stars are fairly simple objects Just balls of gas!
- Thus it might not be surprising that the destiny of a star is tied to its initial mass
- There's another correlated property, and for that we'll bring in a guest speaker...

Stellar Mass and Fusion

- The mass of a main-sequence star determines its core pressure and temperature.
- Stars of higher mass have higher core temperature and more rapid fusion, making those stars both more luminous and shorter-lived.
- Stars of lower mass have cooler cores and slower fusion rates, giving them smaller luminosities and longer lifetimes.

Star Clusters and Stellar Lives

- Our knowledge of the life stories of stars comes from comparing mathematical models of stars with observations.
- Star clusters are particularly useful because they contain stars of different mass that were born about the same time.

A star remains on the main sequence as long as it can fuse hydrogen into helium in its core.

Group Question: T for Fusion

- For protons to fuse together, they must approach within a distance r~10⁻¹⁵ meters
- The electrostatic energy at a distance r is E_{elec}=e²/r~(2.3x10⁻²⁸ J m)/r
- You can equate this to the temperature you would need: kT=E_{elec}, and k=1.38x10⁻²³ J K⁻¹
- Your questions for discussion: What temperature do you need to get to 10⁻¹⁵ meters? What is the actual central temperature of the Sun? What does this imply? What is the resolution?

Quantum Tunneling!

- In quantum mechanics, particles are represented by wavefunctions
- Related to the probability of a particle being in a region
- A "classically forbidden" region (where the particle's energy is too low) means an exponential decrease in the probability (but not to zero!)
- Result: "tunneling" can happen, which lowers the necessary T for fusion a lot!

https://i.stack.imgur.com/RkbTd.png

Context: How Rapid is Stellar Fusion?

 Fusion produces a lot of energy. But how long does it take the typical proton in the core of the Sun to fuse?
 Seconds?

Years? Millions of years? Other?

Context: How Rapid is Stellar Fusion?

- Fusion produces a lot of energy. But how long does it take the typical proton in the core of the Sun to fuse? Seconds? Years? Millions of years? Other?
- The answer is *billions* of years. That's how long the Sun has lived, and will live.
- Thus a fusion event is very rare per proton; it's just that there are a whole lot of protons in the Sun!
- Exponential sensitivity of fusion to temperature means that main sequence stars all have *roughly* the same core temperature (why does that follow?)

Density, Mass, and the Virial Theorem

- This brings us back to our friend George McFly...
- In virial equilibrium (what does that mean?)
 Kinetic energy = -1/2 x gravitational potential energy
- The gravitational potential energy for a particle of mass m in a star of mass M and radius R is ~ -GMm/R
- The kinetic energy for that particle, at temperature T, is roughly kT Thus T~M/R for fixed particle mass
- We just argued that T is roughly the same for all main sequence stars (varies only by factor of 3 overall)
- Thus M/R is nearly constant, so R~M (or pretty close)
- Density ~ M/R^3 ~ M/M^3 ~ $1/M^2$
- Lower-mass stars are denser on the main sequence Density really is destiny!

Review: Hydrogen Fusion

- Discussed this in the context of the Sun last semester.
- Basic process: $4H \rightarrow He$.
 - 0.7% of mass is converted to energy...
 - I.e., the efficiency of this process is $\eta \approx 0.007$:

efficiency = $\frac{\text{energy released}}{(\text{total mass processed})c^2}$.

- About 10⁶ times more efficient that chemical burning.
- Actual process by which hydrogen is fused depends upon the mass of the star.
- Question: what are the nuclear particles (not electrons) that make up four hydrogen nuclei? One helium nucleus? Are they the same? If not, what does that imply?

Hydrogen Fusion

- I don't need you to know the details on the next two slides, but I do want you to know that there are multiple ways for hydrogen fusion to happen, and that the primary way changes as the mass increases
- We need to change four hydrogen nuclei (four protons) into one helium nucleus (two protons and two neutrons)
- Can this be done by having all four protons hit each other at the same time, with two of them converting into neutrons at that moment?

Proton-proton Chain

- For mass $M < 1.3 M_{\odot}...$
 - Reactions proceed via proton-proton chain.
 - Reaction rate is exponential with temperature generally, but is proportional to $\sim T^4$ in the most relevant temperature range

```
{}^{1}H + {}^{1}H \rightarrow {}^{2}H + e^{+} + \nu{}^{2}H + {}^{1}H \rightarrow {}^{3}He + \gamma{}^{3}He + {}^{3}He \rightarrow {}^{4}He + {}^{1}H + {}^{1}H
```

CNO Cycle

- For mass $M > 1.3 M_{\odot}...$
 - Reactions proceed via the CNO cycle.
 - Essentially, carbon acts as a "catalyst."
 - Reaction rate proportional to T^{20} in some T range Exponential generally

¹² C + ¹H
$$\rightarrow$$
 ¹³N + γ
¹³N \rightarrow ¹³C + e⁺ + γ + ν
¹³C + ¹H \rightarrow ¹⁴N + γ
¹⁴N + ¹H \rightarrow ¹⁵O + γ
¹⁵O \rightarrow ¹⁵N + e⁺ + ν
¹⁵N + ¹H \rightarrow ¹⁶O + γ
¹⁶O \rightarrow ¹²C + ⁴He + γ

Incredibly steep temperature dependence!

Main Sequence Lifetime

- A star leaves the main sequence once it exhausts its supply of hydrogen in the core.
- This lifetime depends on...
 - The luminosity *L*.
 - The efficiency of the fusion η .
 - The mass of the star *M*.
 - The fraction of M that can participate in the fusion reactions f.
- Total energy available to the star is: $E = \eta f M c^2$.
- So (assuming constant luminosity), the lifetime is:

$$\tau = \frac{E}{L} = \frac{\eta f M c^2}{L}.$$

Mixing

• What determines *f* ?

- This is controlled by how effectively gas within the star is mixed.
- Convective zones mix well; radiative zones mix poorly.
- Stars with high rotation could mix almost completely Thus rather than inert He sitting in center, H is mixed in to fuse

Main Sequence Lifetime

- For Sun, $f \sim 0.1$, so lifetime $\approx 1.0 \times 10^{10}$ yr (recall, $\eta \sim 0.007$).
- What about other stars?
 - Observations show that, for all but the most massive stars, $L \propto M^{3.5}$.
 - So, using formula for lifetime...

$$\tau \propto \frac{M}{L} \propto M^{-2.5}$$

Scaling from the Sun we get,

$$\tau \approx 1.0 \times 10^{10} \left(\frac{M}{M_{\text{Sun}}}\right)^{-2.5} \text{ yr.}$$

- Very important result!
 - Low-mass stars live for a long time.
 - High-mass stars have short lives.
- Eddington luminosity ~M, so highest-mass stars have L~M and T~L/M=constant! About 2.5 million years for typical f.

Life Track after Main Sequence

- Observations of star clusters show that a star becomes larger, redder, and more luminous after its time on the main sequence is over.
- Let's figure out why!

Red Giants: Broken Thermostat

- As helium core contracts, H will fuse to He in a *shell* around the core.
- Increasing fusion rate in shell does not stop the core from contracting.
- As core keeps shrinking, shell fusion gets more vigorous → rest of star expands to form *red giant*.

The Core-Envelope Effect

- As core contracts and heats up, envelope expands and cools, despite greater luminosity.
 - The energy is spread over a greater surface area.
 - Expanding gases cool (ideal gas law).
- Once helium fusion begins, the core expands and cools, while the envelope contracts and heats up.
 - Envelope gravitational potential energy returned to thermal energy.
 - Luminosity higher than on main sequence because He burning more vigorous than H burning.
- Detailed solutions require running computer models.

- He-fusion doesn't begin right away because it requires higher temperatures than H-fusion—larger charge leads to greater repulsion.
- Fusion of two He nuclei doesn't work (⁸Be is unstable), so Hefusion must combine *three* He nuclei to make carbon (C).

27

Triple-alpha Process

• At temperatures around 100 million K:

 ${}^{4}\text{He} + {}^{4}\text{He} \iff {}^{8}\text{Be} + \gamma$ ${}^{8}\text{Be} + {}^{4}\text{He} \implies {}^{12}\text{C} + e^{+} + e^{-}$

• As a side-effect, also get a little of:

$$^{12}C + {}^{4}He \rightarrow {}^{16}O + \gamma$$

- Notice that unlike with hydrogen fusion, helium fusion does not require any protons to convert to neutrons Three heliums have six protons, six neutrons; 12C too!
- Thus no delay for weak decays, neutrinos
 As a result, in the right circumstances, can have burst!

Helium Flash

- In a low-mass red giant, the core *slows* its shrinking due to partial electron degeneracy pressure support, but continues to heat up from contraction.
- When the core is hot enough for helium fusion, initially the degeneracy pressure is higher than the thermal pressure, so the core *does not expand*—it just gets hotter!
- The core heats up very fast and the helium fusion rate skyrockets until thermal pressure takes over and expands the core again.