[08] Neutron Stars and Pulsars (2/20/18)

Upcoming Items

- 1. Read Ch. S2 for next class and do the selfstudy quizzes
- 2. First midterm two weeks from today!
- Question for a later class: how many of you have taken a course on probability? Statistics?

LEARNING GOALS

For this class, you should be able to...

- ... describe how neutron stars form, and describe what happens if mass is accreted onto such objects;
- ... explain why some neutron stars appear as pulsars to us, and why the spin rate of pulsars implies they are very dense.

Ch. 18.2

Any astro questions?

Neutron Stars and Pulsars

<u>Neutron stars</u>.

- Cooling ball of mostly neutrons supported by neutron degeneracy.
- <u>Ridiculously dense material</u>.
- Accretion results in continuous fusion and <u>X-ray bursts</u>.
- <u>Pulsars</u>. (Note: they are NOT pulsing! Instead, they rotate)
 - Spinning neutron stars with radiation beams that sweep toward us.

Exotic Matter, Part II...

- A paper clip of neutron star matter would weigh more than Mt. Everest!
- A neutron star is even denser than a white dwarf:

Density = (mass) / (volume)

= $(5 \times 10^{30} \text{ kg}) / ((4/3) \pi (1 \times 10^4 \text{ m})^3)$

- = 10^{18} kg/m³ (billion times denser than a white dwarf!).
- In fact, the density is comparable to an atomic nucleus.
 - Surface gravity is so strong that any mountain higher than 1 mm is squashed flat, and any gas on surface quickly differentiates (H on top, then He, then C,..., heavy elements on bottom).
 - At the core of a neutron star there may be "new" and exotic states of matter (new particles, quark soup, etc.).

Star Fall Down, Go Boom

- Big stars: live fast, die young, leave a beautiful corpse!
- H fuses into He, then C, O, ..., but when it gets to iron, the game's up; it can't support itself
- Core collapses, then explosion!

What is Left Behind?

 Fritz Zwicky, irascible Caltech prof: SN might leave behind very compact *neutron star*

Neutron Stars

 A neutron star is the ball of neutrons left behind by a massivestar supernova.

 Degeneracy pressure of neutrons supports a neutron star against gravity.

- Electron degeneracy pressure goes away because electrons combine with protons, making neutrons and neutrinos.
- Neutrons collapse to the center, forming a neutron star.
- Neutron stars are ~90% neutrons, probably (rest are protons, electrons,...)
- What properties do we expect of the star?

- A neutron star is about the same size as a small city.
- Expect ~1.2-2 times mass of Sun in ball 10-15 km in radius
- All 7.6 billion people on Earth, crammed into a teaspoon!

In the Belly of the Beast

- Other highlights
- Magnetic fields on NS surfaces are roughly a billion to a quadrillion times the fields at the Earth's surface(!)
 Atomic shape is quasicylinders, not quasi-spheres
- Superconducting superfluid
- Unknown core: neutrons, or weirder stuff?
 Part of my research to find out
- But NS are so small; how could we detect them?

Serendipity

- Graduate student Jocelyn Bell, 1967
- Looking for quasars but found regular signals
- What could these be?

Group Q: What Could Pulsars Be?

- Observational hints circa 1968: Known periods in range 0.03 seconds to 4 seconds Extraordinarily regular intervals of signals Over long time, periods *increase*, never decrease
- Three possible sources: WD, NS, BH WD: average density up to ~10¹¹ kg m⁻³ NS: average density ~10¹⁸ kg m⁻³ BH: effective average density ~10¹⁹ kg m⁻³ and lower Minimum period from any mechanism $P_{min} \sim \pi/(G\rho)^{1/2}$
- Three mechanisms: rotation (>P_{min}), pulsation (at P_{min}), and orbits (>P_{min}, and orbit shrinks with time due to grav. waves)
- Only one combination of source and mechanism works; in your groups, rule out the other combinations!
 BH are the toughest challenge here...

Pulsar at center of Crab Nebula pulses 30 times per second.

Pulsars

 A pulsar is a neutron star that beams radiation along a magnetic axis that is not aligned with the rotation axis.

Pulsars

 The radiation beams sweep through space like lighthouse beams as the neutron star rotates.

a station por a -

Pulsar Planets

- Pulsars are incredibly good clocks
- Great timing means first extrasolar planets (and still the smallest) were detected around a pulsar!

Testing Einstein

- Einstein's theory of gravity predicts that orbits will decay slowly Gravitational waves
- 1974-now: tests with double neutron star systems
- Passes test with flying colors!

Pulsar Timing Arrays

 Future use: time many pulsars, detect ripples in spacetime!

- From binary supermassive black holes
- Who knows what else pulsars can do!

A common *story* is that pulsars spin fast because a stellar core's spin speeds up as it collapses into a neutron star.

Makes sense... but the reality is more complicated.

More likely: SN produces a "kick" that is somewhat off-center, leading to spin

Neutron Star Binaries

Matter falling toward a neutron star forms an accretion disk, just as in a white dwarf binary.

But because a NS is so much more compact than a WD, matter spiraling close to the NS moves much faster, and is thus much hotter: can be 10 million K, and emit in X-rays!

Accreting matter adds angular momentum to a neutron star, changing its spin.

If the matter can get close enough, it can spin the star up very fast indeed; recordholder spins 735 times per second!

Because of the intense gravity, dropping a brick onto a neutron star would release as much energy as an atomic bomb!

Blowing Stuff Up

- Matter flowing from companion piles up
- Can go through fusion flash
- Like all nuclear weapons on Earth, in 10s, per postage stamp area!

Thermonuclear X-ray Bursts

NS in close binary can accrete from companion.

Pileup of H, He can be unstable to fusion.

Mike Zingale: ASC Center for Thermonuclear Flashes

X-ray Pulsars

- Requires a strongly magnetized rotating neutron star accreting matter from a companion.
- Matter flows down field lines and strikes the magnetic poles of the neutron star: causes X-ray bright "hotspots."
- In hotspots, temperatures get high enough to fuse the incoming hydrogen to helium (continuously).
- As poles spin around, the hot-spots flash in and out of view: get an *accretion-powered X-ray pulsar*.

Magnetars

- In general, neutron stars possess the strongest magnetic fields of any known object.
- But there's a particular class of neutron stars (magnetars) than possess extremely strong fields (10¹⁵ G or 10¹⁰ T).
 - Sometimes, these enormous magnetic fields "snap," leading to very intense explosions.
 - Dramatic example... the December 27, 2004 event:
 - During a period of 0.2 s, it produced $100 \times$ the luminosity of our galaxy.
 - It produced a major disturbance on our upper atmosphere (despite being on the other side of our galaxy!).
 - Every X-ray/gamma-ray satellite detected it (even if it wasn't looking!).
 - The blast probably ripped away the top 50 m of the magnetar crust.
 - Good thing it wasn't closer!!!