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Probability Distributions: Averages Etc.

In this lecture we will discuss some fundamental aspects of probability distributions. To

do that, when we need something specific we’ll use the following data set, which I obtained

by virtually rolling dice and then sorting the numbers in increasing order:

1,1,2,3,3,4,5,6,6,6.

A properly normalized probability distribution P (x), where x indicates the parameters

(written here as a vector, i.e., there could be multiple parameters), has the property that∫
P (x)dx = 1 , (1)

where the integral is over all possible values of x. For any parameters that can only take on

a set of discrete values, the integral is replaced by a sum.

For our specific case, let x represent the number on the die, so that the full set of

possibilities is x = 1, 2, 3, 4, 5, 6. We know that for a fair die, P (x = 1) = 1/6, P (x = 2) =

1/6, . . . , P (x = 6) = 1/6. But our particular data don’t have that distribution. Instead, for

this data set, P (x = 1) = 2/10, P (x = 2) = 1/10, P (x = 3) = 2/10, P (x = 4) = 1/10,

P (x = 5) = 1/10, and P (x = 6) = 3/10.

Clearly we retain all of the information if we just list the data points. But often we want

a quick look at the data, and for that purpose we might want to characterize it in different

ways. Here are some of those ways, and please keep in mind that many of these only apply

to a one-dimensional probability distribution:

The “average”.—Often we’d like a single best value to describe a distribution. The

average is a good choice... except that there are many different types of average! Here are

some examples:

1. The median. This is the value such that half the values are below the median, and half

the values are above. In our specific example, the median is 3.5 because half of the ten

values are below this, and half of the ten values are above this. If we have a continuous

distribution P (x), then the median value xmedian is the solution to∫ xmedian

xmin

P (x)dx = 0.5 . (2)

Here xmin is the minimum possible value of x. The median is a good measure of

the average if you want to avoid being biased by outliers. For example, suppose you

compute the arithmetic mean (see below) of the personal wealth of the people in your

small town, and the answer is $100 million. What a rich community! But maybe Bill

Gates lives in your small town, and in reality most people are dirt poor. The median

would give a better idea of how the typical person is doing.
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2. The mode. This is the single most common value in your data. In our case, 6 appears

3 times, which is more than any other number, so it is the mode. For a continuous

distribution, it’s the peak of that distribution, so xmode is such that the largest value

of P (x) is at P (xmode).

3. The mean. Here we usually talk about the arithmetic mean, but there are other vari-

ants. Examples:

(a) The arithmetic mean. For a set of discrete values, you just add them up and divide

by the total number of values: in our case the sum is 1+1+2+3+3+4+5+6+6+6=37,

and there are 10 values, so the arithmetic mean is 37/10=3.7. For a continuous

distribution, the arithmetic mean is 〈x〉 =
∫ xmax

xmin
xP (x)dx. Note again that this

requires that P (x) is normalized so that
∫ xmax

xmin
P (x)dx = 1. This is also our first

example of a moment of the probability distribution P (x); it is the first moment,

because the thing multiplying P (x) in the integral is x1.

(b) The geometric mean. This is the nth root of the product of the n measurements.

In our case, the geometric mean is (1×1×2×3×3×4×5×6×6×6)1/10 ≈ 3.08.

This type of mean isn’t used a lot in probability and statistics, but it does enter

in some physical processes (e.g., some problems in radiative transfer).

(c) The harmonic mean. This is the reciprocal of the arithmetic mean of the reciprocals

of the n measurements. In our case, the harmonic mean is 10/(1/1 + 1/1 + 1/2 +

1/3 + 1/3 + 1/4 + 1/5 + 1/6 + 1/6 + 1/6) = 2.43. Again, this doesn’t enter much

in statistics, but it does tend to put greater weight on smaller values, which can

be useful in other types of radiative transfer (e.g., it is related to the Rosseland

mean opacity).

That’s all very well, but even if you have carefully selected one of these measures, you

have limited information. For example, the following distributions have the same median,

mode, and arithmetic mean: (1) ten 3’s, (2) three 1’s, four 3’s, and three 5’s, (3) one 1, two

2’s, four 3’s, two 4’s, and one 5. They are clearly different, however, so it would be good to

have a way to distinguish them.

The variance.—This is a measure of the spread of the numbers. To get to the definition,

we can define the second moment of the distribution, which for a continuous probability

function is

〈x2〉 =

∫
x2P (x)dx . (3)

To reiterate, this formula is only valid if P (x) has been normalized such that
∫
P (x)dx = 1.

This is therefore the average of x2 over the probability distribution (and as always if we have

a discrete probability distribution, we sum rather than integrating). For our sample data

set, 〈x2〉 = (1/10)(12 + 12 + 22 + 32 + 32 + 42 + 52 + 62 + 62 + 62) = 17.3. But note that this
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really isn’t what we want. You could imagine, for example, some tight distribution with a

large arithmetic mean (say, 100), such that 〈x2〉 is large; that wouldn’t tell us what we want

to know, which is how much the data are spread. What we’d really like to know, therefore,

is the average of the square of the deviation from the mean:

〈(x− 〈x〉)2〉 =
∫

(x− 〈x〉)2P (x)dx

=
∫
x2P (x)dx− 2

∫
x〈x〉P (x)dx+

∫
〈x〉2P (x)dx

= 〈x2〉 − 2〈x〉
∫
xP (x)dx+ 〈x〉2

∫
P (x)dx

= 〈x2〉 − 2〈x〉2 + 〈x〉2
= 〈x2〉 − 〈x〉2

(4)

This is the variance of the distribution, and its square root is the standard deviation (note

that the variance can never be negative, so a square root is okay!); often the standard

deviation is represented by σ, and often the arithmetic mean is represented by µ. Note

that the standard deviation has the same units as the mean. For our specific case, σ2 =

17.3− (3.7)2 = 3.61, and therefore the standard deviation is a pleasingly exact σ = 1.9.

[By the way, if you have n samples from a distribution and you want to estimate the

variance of the underlying distribution, then for technical reasons you would need to multiply

the value above by n/(n−1), otherwise your estimate will be biased. But here we are simply

computing the variance among the numbers in the sample.]

So now we have two measures of the distribution. Of course, these don’t capture every

aspect of the distribution. For example, there are many distributions that have the same

mean and standard deviation but are asymmetric in different ways. To deal with this there

is a quantity called the skewness, which can be written using our previous notation as

γ1 =
(
〈x3〉 − 3µσ2 − µ3

)
/σ3 . (5)

We could then go to the fourth moment and define something called the kurtosis, which can

be thought of as a measure of how peaked the distribution is, and so on. However, we need

to keep in mind that (1) the original full distribution contains all of the information, so (2) if

we are using mean, standard deviation, and so on to characterize the distribution, then we

are being concise in a way that could throw away some information.


