
Bayesian Parameter Estimation

In this class we will apply the approach we discussed last time to some data, which will

allow us to compare this type of inference with how χ2 is often (incorrectly) used. I promise

we’ll get to real astronomical data as soon as possible, but for these initial concepts it will

often be useful for us to use synthetic examples.

Say that you flip a coin 10 times and you get 4 heads and 6 tails. Your model is that the

probability of heads coming up in a given throw is a, and thus that the probability of tails

coming up in a given throw is 1 − a. Here we will fix the number of throws at 10 (i.e., the

actual number!), which means that in our model we would expect 10a heads and 10(1− a)

tails; note that our two bins are the number of heads and the number of tails. The likelihood

of the data given the model (with parameter a) is then

L(a) =

(
(10a)4

4!
e−10a

)
×
(

(10(1− a))6

6!
e−10(1−a)

)
. (1)

We can rewrite this as

L(a) =
104

4!

106

6!
e−10a4(1− a)6 . (2)

Because only the ratio of likelihoods matters in our estimation of a, we can cancel out all of

the factors in front to leave

L(a) ∝ a4(1− a)6 . (3)

Note, though, that the likelihood is only one of the factors that we need to get the posterior

probability density P (A|B). We also have to multiply by the prior probability for a. Now,

by its nature a has to be somewhere between 0 and 1. More on priors later, but for our

current purposes let’s say that a has an equal probability of being anywhere between 0 and

1. Then in that special case, the posterior probability density is simply proportional to the

likelihood. We will label the posterior probability density P (a) = L(a)p(a) (where p(a) is

the prior probability density for a, which in this case we set to 1 across the whole range a = 0

to a = 1). Because P is a probability density, when it is properly normalized
∫ 1

0
P (a)da = 1

(in the same way that the prior probability density was normalized,
∫ 1

0
p(a)da = 1).

What can we do with that posterior probability density? As a first step, let’s deter-

mine where we have our maximum probability (i.e., the mode). We get that by taking the

derivative of L with respect to a and setting it to zero. This gives:

4a3(1− a)6 − 6a4(1− a)5 = 0

4(1− a)− 6a = 0

a = 0.4 .

(4)

That’s intuitive; with no other information, our best guess is that the true probability exactly

reflects the data.



But we almost always want more than just the best value; we also want to be able to say

that, with some probability, a is in a particular range. In Bayesian parlance, we would like to

know the “credible region” to some level of probability. To get an idea of what this means,

we calculate and plot the normalized posterior probability density as a function of a in the

figure. Note that the probability density can exceed 1; it is the integral of the probability

density that must equal 1.

When we look at the figure we see that the probability density is not symmetric around

the peak. For example, at a = 0.2 the probability density is about 0.95, whereas at a = 0.6

the probability density is about 1.2. This introduces an ambiguity in the definition of the

credible region. Should we, for example, start at the peak and move symmetrically to smaller

and larger values of a until we get to some total probability? Should we begin from a = 0

and find the value of a that gives us an integral equal to a specified probability? Should

we find the smallest region that contains the specified probability? The smallest contiguous

region that contains the specified probability?

We’ll choose the last of these, for illustrative purposes. Suppose that we want a 68.3%

credible region (which we choose because this corresponds to the probability between −1σ

and +1σ for a Gaussian distribution). Then the minimum-width contiguous range that

includes this probability goes from a = 0.264 to a = 0.547, for a total width of ∆a = 0.283.

What if we were to try to use χ2? Now, no one in their right mind would do this when

there are only 4 counts in one bin and 6 in the other, but suppose that we blindly did it

anyway. The way that most people in astronomy compute chi squared is to sum the ratio

of the squared difference between the data and model at each data point, and divide by the

variance that we associate with the data (the way it was introduced, you divide instead by

the variance that you associate with the model, which is closer to the Bayesian approach

although it’s still very wrong if your model predicts a small number of counts in enough

bins). If our data are simply counts, then in the Gaussian limit the variance in a given bin

is equal to the number of counts in that bin of the data. Then for a heads fraction of a, the

data-variance chi squared for our data is

χ2 =
∑
i

(mi − di)2

σ2
i

=
∑
i

(mi − di)2

di
=

(10a− 4)2

4
+

(10(1− a)− 6)2

6
, (5)

which we can expand as χ2 = 5
3
(5a − 2)2. The minimum χ2, which in this particular case

(but not in general) is χ2 = 0, is again a = 0.4. When we look up a chi squared table,

we see that for one parameter (a in our case), the 1σ region is determined by looking for

regions where the chi squared is 1 greater than the minimum: ∆χ2 = 1. Performing this

operation faithfully tells us that according to the χ2 prescription, our 68.3% range should

be from a = 0.245 to a = 0.555, for a total width of ∆a = 0.31. What we see, therefore, is

that our log likelihood procedure gets a somewhat tighter region than we get from a blind



Fig. 1.— Posterior probability density for the probability a of heads after ten flips that produced

four heads and six tails. Here our prior was that any value of a from 0 to 1 was equally likely.

Note that, as a result, the posterior probability density peaks at a = 0.4, and that the probability

density is asymmetric around that peak.



application of chi squared. The chi squared isn’t too bad, even in this circumstance, but it

doesn’t get us the correct probability distribution.

For completeness, let’s do this again by performing a chi squared test the way it should

be performed: by having the denominator be the model variance. The χ2 assumption is

again that the variance is equal to the expected (not observed in this case!) value:

χ2 =
∑
i

(mi − di)2

σ2
i

=
∑
i

(mi − di)2

mi

=
(10a− 4)2

10a
+

(10(1− a)− 6)2

10(1− a)
. (6)

As you can see, compared with the data-variance version of the χ2 test (which, again, is

commonly used in astronomy!), extreme values of a are penalized much more (a → 0 and

a → 1 both cause χ2 → ∞). The minimum χ2 is again 0 at a = 0.4. For the correct

model-variance χ2, ∆χ2 = 1 gives us a range of a = 0.2611 to a = 0.5571.

Now it’s your turn, using the data sets on the website. Based on the data sets, what

are the posterior probability densities for p if we use the Poisson likelihood? What if we use

Wilks’ Theorem (see the Appendix) with the Poisson log likelihood? How about if we use

χ2? What is the 68.3% credible region using each method? Note that the χ2 calculation

can in this case be performed analytically, but I recommend that you save time and do it

numerically. What conclusions do you draw?

In practice, likelihood analyses usually use the natural log of the likelihood rather than

the likelihood itself. That’s because products of exponentials and powers can often lead to

values that are huge or tiny, which makes them difficult to use. Logs are better behaved. In

that case, note that it is the difference between log likelihoods that we need to use, because

that corresponds to the ratio between likelihoods.

For next time we will continue with parameter estimation, but this time in a more

astronomically realistic setting where we have a potentially continuous distribution of data.

This is where many astronomers get a nervous tic that compels them to bin data, but as

we’ll see that isn’t necessary!

Appendix: Wilks’ Theorem and its Proof

The likelihood is L =
∏

i pi, where pi is the probability of the data given the model in

bin i. If we are in the limit of Gaussian statistics, then

pi =
1

σi
√

2π
e−(di−mi)

2/2σ2
i (7)

where σ2
i ≈ mi for mi � 1. Thus

lnL = −
∑
i

(di −mi)
2

2σ2
i

+
∑
i

ln

(
1

σi
√

2π

)
= −χ2/2 + const . (8)



Note that for a decent fit, di ≈ mi, which means that you could switch di for mi in the

variance. Therefore 2∆ lnL = −∆χ2 in the Gaussian limit. For example, if you have one

parameter and you are interested in the 1σ range, a look at a χ2 table tells you that ∆χ2 = 1

in that case. Thus to apply Wilks’ Theorem to your log likelihood computation you find

the maximum log likelihood and then determine the range of the parameter that is within

∆ lnL = −0.5 of the maximum.

One of the points of the computational exercise suggested for this class is for you to get

an idea of how well this approximation does in specific cases. Enjoy!


