
Units, limits, and symmetries

When solving physics problems it’s easy to get overwhelmed by the complexity of some of the

concepts and equations. It’s important to have ways to navigate through these complexities

and reduce errors. One of the best navigation tools is a sense of what the answer should look

like. What units should it have? How should it behave in easily-understood limits? What

are the symmetries of the problem? What should the answer depend on? You should check

every answer you get against these common-sense guides. This will cut down dramatically

on errors in derivation. Even more importantly, it will help build up your intuition about

physics, because you will be able to approach problems by constraining the answer first. It

will also put you one step ahead of quite a number of researchers; you’d be amazed how

often you’ll be able to get to an answer quickly using these techniques!

In this class we’ll run into a lot of equations, some of them pretty hairy. I want you to

form the habit of checking each equation for units, limits, and symmetries (as well as other

things such as conservation laws). To help with this, Doug Hamilton and I are writing a

book of practice problems. In a given problem, you’re presented with a physical situation

and several possible expressions for the correct answer. The point it not to get the right

answer per se, but to be able to rule out definitely wrong answers using simple arguments.

In our class, I’ll frequently stop and consider an equation to see if it can be the right one.

For this lecture, then, I want to give examples of this and practice on a few cases in

mechanics, since these tend to be cleanest. To do this I am taking examples from the book

Doug and I are writing, as well as some of the introductory material.

1. CHECKING UNITS

Units are the first thing to check when considering possible answers to a problem. Any

equation that you write must be dimensionally correct. Check your equations occasionally

as you go through a derivation. It takes just a second to do so, and you can quickly

catch many common errors. Remember this general rule: in all physically valid solutions,

the argument of all functions (e.g. trigonometric functions, exponentials, logs, hyperbolic

functions, etc.) must be dimensionless. Taking the cosine of something with units of mass

or length makes no physical sense. For each of the problems below, imagine that you and

several friends have just gone through lengthy derivations and each come up with different

answers. In each case, you can rule out several of the answers with dimensional arguments

without ever having to look at the actual derivations.

Here’s an example:



1. A daredevil is shot out of a cannon at speed v and angle θ from horizontal. Earth’s

gravitational acceleration, g, is assumed constant, and air resistance is neglected. How far

downrange, D, does the daredevil fly before hitting the ground?

A) D = 2v2 cos θ

B) D = (2v2/g) sin θ

C) D = 2g sin θ cos θ

D) D = 2vg(cos θ − sin θ)

E) D = (2v2/g) sin g

Answer: Distance is measured in meters, velocities in m/s, and acceleration in m/s2. All

of the above answers have left-hand sides which are distances in units of meters, so the

correct answer must have units of meters on the right as well.

A) has units of velocity squared (WRONG)

B) has units of meters (COULD BE OK)

C) has units of acceleration (WRONG)

D) has units of meter squared per second squared (WRONG)

E) the argument of the sine has units (WRONG)

Note that units checking like this is important but does have limitations. For example,

any equation that is dimensionally correct is also dimensionally correct if either side is

multiplied by an arbitrary dimensionless factor.

2. CHECKING LIMITS

Check all of your final answers and important intermediate results to see if they behave

correctly in as many different limits as you can think of. Sometimes you will know how a

general expression should behave if a particular variable is set to zero, infinity, or some other

value. Make sure that your general expression actually displays the expected behavior!

Here is a simple example that can be used as a mnemonic for some trigonometric multiple

angle formulae.

2. The double angle formula for sines is sin(2θ) = 2 sin θ cos θ. Which of the following

expressions might be correct generalizations?

A) sin(θ1 + θ2) = sin θ1 cos θ2 − cos θ1 sin θ2

B) sin(θ1 + θ2) = sin θ1 cos θ2 + cos θ1 sin θ2

C) sin(θ1 + θ2) = cos θ1 cos θ2 + sin θ1 sin θ2

D) sin(θ1 + θ2) = cos θ1 cos θ2 − sin θ1 sin θ2



Answer: We know how the correct equation must behave in a number of limits. If θ1 = θ2,

for example, the correct expression must reduce to the formula for sin(2θ) given above.

A) reduces to sin(2θ) = 0 (WRONG)

B) reduces to sin(2θ) = 2 sin θ cos θ (COULD BE OK)

C) reduces to sin(2θ) = 1 (WRONG)

D) reduces to sin(2θ) = cos2 θ − sin2 θ (WRONG)

Note that the equation is wrong if it fails for any value of θ - so C) and D) are wrong

because they fail for θ = 0◦ while A) is wrong because it fails for θ = 45◦. Note that you

can obtain the formula for the sine of the difference of two angles by letting θ2 → −θ2 in B).

3. TAKING ADVANTAGE OF SYMMETRIES

Symmetries are fundamental in physics (and astronomy!). Problems can have symmetry

about a point (spherical symmetry), a line (cylindrical or axial symmetry), or a plane

(mirror symmetry). You can use symmetries in two ways: 1) to check your final answer to

a problem or, with a little more effort, 2) to simplify the derivation of that final answer. As

an example, time-independent central forces (like gravity) have spherical symmetry because

the force depends only on the distance from the origin. In this case, spherical symmetry

means that once we find one solution (e.g. a particular ellipse for gravity), all other possible

orientations of this solution in space are also solutions.

Another type of symmetry could be called a symmetry of labeling. In many problems, it is

clear that simply renaming two identical things can’t change anything fundamental about

the system. For example, consider two objects of mass m1 and m2 moving in circular orbits

around each other, bound by gravity, separated by a distance a. What is the frequency of

rotation? A guess like ω =
√

G(2m1 + m2)/a3 can’t be right, because the answer would

change simply by switching the labels on the masses.

4. PUTTING IT TOGETHER

Now let’s use these for some more problems in mechanics. For these, have class rule out one

at a time (that is, ask for someone to rule out one answer; then another student rules out

another answer; and so on).

3. Let a mass m be in a circular orbit of radius r and angular frequency ω radians per

second. What is the centripetal force needed to keep the mass in that orbit?

A) f = m

B) f = rω



C) f = mrω

D) f = mrω2

E) f = mr2ω2

4. A good estimate for the energy released during the accretion of Jupiter is:

A) GM 2/R

B) GM 2/R2

C) GM/R

D) GM/R2

5. The sound speed cs in an ideal gas depends only on the pressure P and the density ρ of

the gas. The correct expression is:

A) cs =
√

ρ/P

B) cs =
√

P/ρ

C) cs = P 2/ρ

D) cs = ρ2/P

E) cs =
√

Pρ

6. Two bodies of masses m1 and m2 placed a distance r apart. What is the strength of the

gravitational forces that the bodies exert on each other?

A) F = G(m1 + m2)m2/r
2

B) F = G(m1 + r)(m2 + r)/r2

C) F = Gr2m1m2

D) F = G/(r2m1m2)

E) F = Gm1m2/r
2

7. Let a particle orbit in a circle a distance h above a planet of mass M and radius R (the

particle mass is assumed very small). What is the angular momentum per unit mass of the

particle?

A) ` =
√

GM(R + h)

B) ` =
√

GM(Rh)1/4

C) ` =
√

GMR2/h



D) ` =
√

GMh2/R

8. A telescope with aperture D observes a source at a wavelength λ. Diffraction limits the

angular resolution. What is that limit?

A) θ = 1.22λD.

B) θ = 1.22D/λ.

C) θ = 1.22λ/D.

D) θ = 1.22/(λD).

9. A star of average radius R is rotating with angular frequency ω. We define the sign of

ω such that if ω > 0 then the star is rotating west to east like the Earth, whereas if ω < 0

then the star is rotating east to west. Rotation will distort the radius of the star. To lowest

order in ω, what will be the deviation of the equatorial radius from R?

A) ∆r ∝ ω

B) ∆r ∝ ω2

C) ∆r ∝ ω3

10. A white dwarf of mass M has reached an equilibrium radius R. Its total energy is

therefore a minimum. If the white dwarf’s radius is changed by ∆R (∆R < 0 means

shrinking the star; ∆R > 0 means expanding it) then which of the following could be true

about the change ∆E in the total energy?

A) ∆E ∝ ∆R.

B) ∆E ∝ (∆R)2.

C) ∆E ∝ (∆R)3.

D) ∆E ∝ (∆R)4.

11. You launch a rocket straight up from the Earth’s North pole, and it rises up to a

maximum height H, then falls back to Earth. The maximum height above the Earth is

given by one of the expressions below. Here RE is the Earth’s radius, X = v2RE/GME, G

is the gravitational constant, ME is the Earth’s mass and v is the launch velocity. Rule out

as many of the following expressions that you can.

A) H = REX/(1 +
√

X)

B) H = REX/(1 − X)



C) H = REX/(2 − X)

D) H = RE(1 − X)/(2 − X)

E) H = vX2/(2 − X)

F) H = REX/2

G) H = REX2/(2 − X)

H) H = REX|1 − X|/(2 − X)


