
One-body gravitation

Now we’re finally ready to take on a specific force. To quote the great poet Arnold

Schwarzenegger, “What is important is gravity”. Universal gravitation was suggested by

Isaac Newton, and represented an important transition in the way people thought about

nature. Prior to Newton, many people if asked would have said that the governing laws of

the heavens were different than the laws of the Earth. Afterwards, the search for unity went

ahead full steam.

Newton’s law says that if two objects of masses m1 and m2 are at locations r1 and r2,

then object 2 attracts object 1 with a force

F21 = −
Gm1m2

r2
r̂ (1)

where r ≡ r1 − r2, r = |r|, and r̂ ≡ r/r. Ask class: in what ways does this satisfy

the constraints on forces that we discussed last time? The force on 2 due to 1 is equal

and opposite to that on 1 due to 2, and the force is directed along the line between the

two objects. Note also that the force only depends on r1 − r2, and not the two positions

separately, as is intuitively reasonable. The constant G = 6.67 × 10−8 cm3 g−1 s−2 has

units that are notoriously difficult to remember. The easiest way is to remember a formula

involving G (such as the force formula above!), and work it out from the known units of

force, mass, and distance.

This one little simple force underlies all the marvelous richness of gravity. In the next

several classes we’ll see how intricate gravitational interactions can be, but following the

principle of “do the simplest thing first” we’ll look at a stripped-down system. In particular,

let’s imagine that we have two point masses, so we don’t worry about their interior structure.

Let’s also assume that one mass (say, m1) is much greater than the other mass. Then, from

Newton’s second law, the acceleration of mass 1 is tiny by comparison to the acceleration

of mass 2. To a first approximation, then, we can assume that object 1 is stationary and

object 2 moves around it. This is a good approximation for star-planet systems, although

deviations from this are what have allowed detection of extrasolar planets.

We will eventually need to do detailed derivations to determine the nature of the orbits.

First, though, let’s see what we can understand qualitatively. I assert that this orbit will

take place in a plane. Ask class: what is an easy way to see this? It comes from symmetry.

Imagine that the orbit starts off in a plane, which we’ll call the x-y plane for convenience.

The symmetry about that plane means there is no reason for the orbit to move into +z or

-z; therefore, it’ll stay in the original plane of orbit. What about the angular momentum of

the orbit of m2? The total angular momentum of the system is conserved as always, but as

we know, in general a given component need not be conserved. Ask class: what can we



say in this case? Here, the torque on m2 from m1 is N = r × F12. But F12 ∝ r, so N = 0.

Therefore, the angular momentum of the orbit of m2 itself is indeed conserved. Incidentally,

note that angular momentum conservation means that the orbit stays in a plane; if the

orbital plane tipped, so would the angular momentum vector.

By the way, you can see that angular momentum conservation doesn’t require an inverse

square law per se. All it requires is that the force be a central force (directed towards the

center, depending only on the distance from that center). Keep that in mind when we explore

other central forces.

Okay, time to get into more detail. We’ll start by proving a couple of important theorems.

Theorem 1: a particle inside a spherical shell of uniform density experiences no net

force. This is most easily demonstrated using symmetry. Suppose the shell has radius R and

mass per unit area Σ. Consider a point that is somewhere in the interior. Consider a solid

angle δΩ from that point to the edge in one direction. Let the distance from the point to

the edge be r1. Therefore, the area of the shell intercepted is δA1 = r2
1δΩ, and the mass is

δM1 = ΣδA1 = Σr2
1δΩ. If you imagine that there is a tiny mass m at the point in question,

the magnitude of the gravitational force on that mass is

δF1 = GmδM1/r
2

1 = GmΣδΩ , (2)

where the r2
1 have cancelled. Now consider the force from the shell in the solid angle δΩ in

exactly the opposite direction from the first piece. It, too, will exert a gravitational force of

magnitude GMΣδΩ, but the direction will be opposite to that of the first piece. Therefore,

combined, the forces from the two pieces will cancel. This can be done for any pair of points,

hence the net force is zero from the whole shell. If the Earth were hollow, you’d basically

float around inside as if you were in empty space.

Theorem 2: A particle outside a sphere experiences the same force as if all the mass of

the sphere were concentrated at a point at the sphere’s center. This is an extremely important

theorem. We’ll do it with calculus, but you get extra respect for Newton when you realize

he had to do it with geometry (since he himself invented calculus, other people weren’t used

to it yet!). To prove this, let’s show that the force from an infinitesimally thin spherical

shell reduces to that of a point at the center. Then, we can build up a sphere from spherical

shells.

Suppose the shell has a mass per area Σ, and a radius R. Set up a coordinate system

where the center of the sphere O is at the origin and the point P at which we’ll calculate

the force is on the x axis, a distance r from O. Ask class: by symmetry, what is the only

possible direction of a net force? Along the x axis, as we’ve defined it, since in the y and z

directions the forces will cancel. Consider a small element of the shell, an angle θ from the

x axis as measured from O. Let this element have an angular extent dθ as measured from



O. Suppose that the center of the element is the point Q. We define the distance PQ to be

s, and let φ be the angle OPQ (i.e., the angle from the x-axis as seen from the point P).

As defined, the force on a particle of mass m at P from the entire ring at θ is δF =

GmδM/s2 = Gm2πΣR2 sin θdθ/s2. However, we are only interested in the force along the

x-axis, by symmetry, so we need to multiply this by cos φ. The total force is this component

integrated over the shell, i.e., integrated over θ. Thus,

F = Gm2πΣR2

∫

π

0

sin θ cos φdθ

s2
. (3)

If you write this out it looks nasty, but you can simplify things by substituting and using s

as the primary variable. From the law of cosines,

r2 + R2 − 2rR cos θ = s2 , (4)

so if we differentiate and realize that r and R are constant, we get

rR sin θdθ = sds . (5)

The limits of the integral, which previously were θ = 0 to θ = π, now become r−R to r+R.

Another application of the law of cosines gives

cos φ =
s2 + r2 − R2

2rs
. (6)

The integral then becomes

F = Gm2πΣR2

∫

r+R

r−R

s2 + r2 − R2

2Rr2s2
ds . (7)

If the mass per area of the shell is Σ, then the total mass M of the shell is given by

M = 4πΣR2, so let’s substitute that in. With a little rearrangement of the integral, we then

have
F = GmM

4Rr2

∫

r+R

r−R

(

1 + r2
−R2

s2

)

ds

= GmM

r2 .
(8)

Hooray! That simplifies things a lot. Ask class: what can we conclude about the force

outside a sphere of nonuniform density, if the density distribution is spherically symmetric

(i.e., the density can be a function of radius but nothing else)? It’s still the same as a point

mass at the center, since again we can break down the force into uniform spherical shells.

Given those two theorems, let’s idealize the Earth as a sphere of uniform density. Ask

class: if you drilled a narrow hole deep into the Earth, what would happen to your weight

as you went further down? The part outside where you are doesn’t contribute, so ignore

that; it’s only the mass interior to you that matters. For uniform density, a distance r from



the center the mass is M = ρV ∼ r3. The force scales as M/r2 ∼ r, so as you go deeper, r

decreases and so does the force. It must be that way: think of the limit, when you go to the

center r = 0. The whole Earth is exterior to you, so the force must vanish.

To a high degree of accuracy, stars and planets are spheres, so the second theorem eases

our life greatly. Smaller objects, such as asteroids, can be significantly aspherical, so it’s

tougher to treat the gravitational field near them.

We will now specialize to the orbit of a particle with very small mass m around a star

or planet with mass M ≫ m that can be approximated as a sphere, so that its gravitational

field is that of a point. This case is most easily treated in cylindrical coordinates. Mind you,

it doesn’t have to be treated in cylindrical coordinates. Just as F = ma will work for any

mechanics problem, Cartesian coordinates can be used for any problem whatsoever. It’s just

easier in some cases to try another system (and it can give us more insight, too). This is

like the joke told by Abraham Lincoln: “If you call a tail a leg, how many legs does a dog

have? Four. Calling a tail a leg doesn’t mean it is one.” In cylindrical coordinates, the force

equation reads

mr̈ = −(GmM/r2)r̂ (9)

where the double dot over the r means a second time derivative. Note that we can cancel

m out of this problem entirely. That’s a rather profound physical statement. A 1 kg mass

will orbit the Earth in exactly the same way as a 2 kg mass, and independent of, e.g., its

composition. In general relativity this is a reflection of a deep principle called the equivalence

principle. In any case, it is useful to break this equation into radial and transverse compo-

nents. In cylindrical coordinates, the radial component of r̈ is r̈ − rθ̇2, and the transverse

component is 2ṙθ̇ + rθ̈. If you’re not familiar with derivatives in cylindrical coordinates, I

strongly recommend looking it up in your favorite book. This, by the way, is an example

where looking at limits is a great way to get insight. For example, if there is only radial

motion (θ̇ = 0, θ̈ = 0), then only the radial component is nonzero, and its value is r̈ as it

should be.

The radial and transverse components of the force equation are then

r̈ − rθ̇2 = −GM/r2

2ṙθ̇ + rθ̈ = 0 .
(10)

Taking the second equation and multiplying by r we get a perfect differential, so it reduces

to d(r2θ̇)/dt = 0. Therefore, j ≡ r2θ̇ is a constant. Ask class: what is this constant? Since

rθ̇ is the component of the velocity perpendicular to r, r2θ̇ is the magnitude of r×v, or the

angular momentum per mass. Therefore, this is just the conservation of angular momentum.

Incidentally, in planetary astronomy, what we’ve called j is usually called h. Sometimes it

is called Λ. We’re using j for consistency with our book. Note also that r2θ̇ is the rate at

which area is swept out by the orbit. We have therefore derived Kepler’s second law: equal



areas are swept out in equal times by an orbit.

To evaluate the radial component of our equation, it is convenient to use the new variable

u ≡ 1/r . (11)

We find

ṙ = −
1

u2
u̇ = −

1

u2
θ̇
du

dθ
= −j

du

dθ
. (12)

The last step applies because θ̇ = ju2. Our second derivative is

r̈ = −j
d

dt

du

dθ
= −jθ̇

d2u

dθ2
= −j2u2

d2u

dθ2
. (13)

Substituting into our radial force equation, we get

d2u

dθ2
+ u =

GM

j2
, (14)

for which the general solution is

u = A cos(θ − θ0) + GM/j2 . (15)

Ask class: what is the physical significance of θ0? It simply determines the orientation of

the orbit relative to some arbitrary angle of reference. This means that we can select θ0 = 0

without loss of generality, so the equation for r becomes

r =
1

A cos θ + GM/j2
. (16)

We can further simplify this expression by defining

e ≡ Aj2/(GM) r0 ≡ j2/[GM(1 + e)] . (17)

We then have

r = r0

1 + e

1 + e cos θ
. (18)

This is the polar equation of a conic section (circle, ellipse, parabola, hyperbola). This

equation is written in such a way that the center of the coordinate system is at one focus,

not the center, hence in a system with one dominant mass (e.g., the Sun in the Solar System)

that mass is at a focus. Here r0 is the distance of closest approach (called a pericenter in

general; perihelion for the Sun, perigee for the Earth, and so on) and e is the eccentricity.

For a circle, e = 0; for an ellipse, 0 < e < 1; for a parabola, e = 1, and for a hyperbola,

e > 1. Planets have e < 1, so we have derived Kepler’s first law: planets travel in ellipses.

Most planets have low-eccentricity orbits. Mercury (e=0.206) and Pluto (0.249) have the

highest e. This explains why it took so long to discover that the planets weren’t moving on

epicycles on top of circles: for low e, an ellipse is well described by epicycles, to the accuracy

of observation available to the ancients.


