
One-body gravitation, continued

Let’s continue by investigating the period of an orbit under the influence of an inverse

square force. Our next question has to do with the period of the orbit. When doing a

derivation such as this, it’s useful to start by establishing a known path to the solution, even

if that path is nonoptimal. In our case, we know that

θ̇r2 = j

(dθ/dt)r2 = j

(r2/j)dθ = dt .

(1)

The period is P =
∫

dt, where the integral is over a full period θ = 0 to 2π. Since we know

r as a function of θ, we can do this integral and get the answer. Perhaps the integral will

require use of an integral table, but the answer can be obtained in this way.

Now that we know we can solve it that way, we can step back and examine whether

anything about the problem allows a trick to get to the solution more elegantly. In this

case there is such a trick, and it stems from Kepler’s second law of equal areas swept out in

equal times. Consider the area swept out by a particle initially at position r that moves to

a position r + ∆r. The area of this triangle is

∆A =
1

2
|r × ∆r| , (2)

so the constant rate at which the area is swept out is

dA/dt =
1

2
|r × v| =

1

2m
|r×mv| = L/(2m) = j/2 . (3)

Therefore, the time needed to sweep out an area A12 between points 1 and 2 is t12 = A12/Ȧ =

A12(2/j). The area of an ellipse of major axis a and minor axis b is A = πab, so the period

of the orbit is

P = 2πab/j =
2πa2

j

√
1 − e2 , (4)

where the last equality is because for an ellipse b/a =
√

1 − e2. We now turn to the polar

equation for the orbit,

r = r0
1 + e

1 + e cos θ
, (5)

to realize that at θ = 0, r = r0 = j2/[GM(1+ e)], and at θ = π, r = r1 ≡ r0(1+ e)/(1− e) =

j2/[GM(1 − e)]. Therefore, the major axis is

2a = r0 + r1 =
j2

GM

(

1

1 + e
+

1

1 − e

)

=
2j2

GM(1 − e2)
. (6)



Writing (1− e2) in terms of a allows us to eliminate (1− e2) in the expression for the period,

and after some rearranging we get

P = 2π
(

a3/GM
)1/2

. (7)

For a system with a dominant mass, such as the solar system, GM is the same for all planets

and we get Kepler’s third law: the square of the orbital period is proportional to the cube of

the semimajor axis.

Again, we could have obtained exactly the same answer by a direct integration. Which

one you use is a matter of personal preference. It is, however, useful to look at alternate

ways of doing such calculations so that you have a larger bag of tricks.

One thing that’s been missing from our discussion so far is energy. When you drop a

stone in a gravitational field, it speeds up as it falls. Conservation of total energy requires

that some form of energy decrease to compensate for the increase in kinetic energy. This

form of energy is potential energy. Potential energy is only useful as a concept if the force in

question is conservative. What does that mean? One operational definition is that a force is

conservative if a particle can be moved in an arbitrary path, returning to its starting point,

and have the same energy it did initially. The work done by a force F over an infinitesimal

path ds is F · ds, so this condition is
∮

F · ds = 0 (8)

for any closed path. Ask class: can they think of an example of a force that violates this

condition? Any drag force will do it, since drag forces are always opposite to the direction of

motion. If the condition above does hold, it also means that the work W12 done by the force

between any two points 1 and 2 doesn’t depend on the path taken between those points.

This means it is possible to express W12 as the change in something that depends only on

where those two points are. That something must therefore be a scalar, which we’ll call −V .

Differentially, then, we have
F · ds = −dV

Fs = −∂V/∂s

F = −∇V (r) .

(9)

This is an intuitive derivation of something that can be proved rigorously in calculus: for a

force to be conservative, it is necessary and sufficient that it be expressible as the gradient

of a scalar function of position only. This V is called the potential energy. Like the force,

the potential energies from a collection of particles add linearly. Notice that we can add any

constant to V without changing the force, hence the potential energy does not have an overall

normalization. Conversely, this means we can select a normalization that is convenient. The

usual one is that the potential energy goes to zero as r → ∞. To return to our orbit problem,

this means that if and only if the force field is conservative, the total energy of a particle (V



plus the kinetic energy 1
2
mv2) remains constant. Note, in particular, that if the potential

varies with time in the region that the particle traverses, the energy of the particle need not

remain constant. Of course, as we emphasized in our discussion of conservation laws, the

total energy of the system must be conserved, but for now we’re focusing on the energy of

just one particle.

How can we tell if a given force can be expressed as a gradient of a scalar? Recall that

∇×∇A = 0, where A is any scalar. It goes the other way, too: if ∇× B = 0, where B is

some vector, then B = ∇A can be expressed as a gradient of a scalar. Therefore, if for a force

F, ∇×F = 0, then F is conservative. As a particular example, any central force F = f(r)r̂

is conservative. Specifically, therefore, gravity is conservative. Since Fgrav = −(GM/r2)r̂ =

−∇Vgrav(r), the gravitational potential energy is

Vgrav(r) = −GMm

r
. (10)

Let’s consider a couple of examples. Consider a thin spherical shell of radius R and total

mass M . Normalize V so that V = 0 at infinity. Ask class: what is the potential of a small

mass m a distance r > R from the center of the shell? It’s −GMm/r. Ask class: what is

the potential of a small mass m inside the shell, at a distance r < R from the center? It’s a

constant, −GMm/R. Note that the gradient of a constant is zero, so the force is zero inside

the shell as we derived earlier. Note that, if we define V = 0 at infinity, then because V < 0

closer to an object, it requires an input of energy to take a small mass from near an object

out to infinity; the small mass is gravitationally bound to an object. The magnitude of V is

therefore the energy input required to unbind a small mass, or equivalently, is the amount

of kinetic energy generated by a small mass falling from a great distance.

As another example, consider the following. Protostellar evolution effectively involves

a gas cloud gradually becoming more and more compact as it settles down to become a

star. Ask class: to within an order of magnitude, what is the total energy liberated in the

production of a star of mass M and radius R? To this accuracy, you can imagine each little

bit of matter m falling onto a mass M . The energy liberated is GMm/R. But to assemble

the star, we need not a mass m, but a mass M . Therefore, to order of magnitude, the total

energy release is GM2/R. If we assume that the luminosity during this phase is roughly

equal to the luminosity of the star on the main sequence, we can get an estimate for the

duration of the protostellar phase. For the Sun, that number is about 3 × 107 yr.

Armed with our potential energy, we can define a total energy E that is the sum of the

kinetic and potential energies. In polar coordinates,

E =
1

2
m(ṙ2 + r2θ̇2) + V (r) = constant. (11)

Remarkably, for inverse square orbits, the value of the semimajor axis a is determined entirely



from the total energy:

a = −GMm/(2|E|) . (12)

In addition, the eccentricity can be written as a function of E and the other parameters:

e =
[

1 + 2Emj2/(GMm)2
]1/2

. (13)

From this, we can see that the type of orbit depends on the energy:

E < 0 e < 1 : closed orbits (circle or ellipse)

E = 0 e = 1 : parabolic orbit

E > 0 e > 1 : hyperbolic orbit .

(14)

We’re really rather lucky mathematically that gravity is an inverse square force. Orbits

are closed (they retrace themselves) and are stable (i.e., a slight perturbation of an elliptical

orbit gives a slightly different elliptical orbit, but nothing catastrophic happens). This isn’t

true in general for a central force. For example, consider F ∝ rn. Bertrand’s Theorem is

that the only force laws of this type that give closed orbits are n = −2 (our inverse square)

and n = 1 (Hooke’s law, for a spring)! The lack of closure in other cases leads to precession.

That is, for example, suppose you determine the angle θperi of closest approach (pericenter)

for an orbit. If n = −2 or n = 1, then θperi is the same, orbit after orbit. If the force law is

something else, θperi changes. This is indeed the case for general relativistic gravity, which

effectively is steeper than r−2 near an object. The precession induced by this effect is seen in

an anomalous extra 43” per century of precession by Mercury (the total precession is about

100 times this, but is the result of perturbations by other planets).

Stability is another issue. Ask class: I assert that a circular orbit is possible in any

central force field. Why? It’s because F = F (r) only, so at constant r one has a constant

force. However, that orbit doesn’t have to be stable. It turns out that if n ≤ −3, circular

orbits are unstable, meaning that a slight perturbation will cause the orbit to either spiral

inwards or outwards. Once again, general relativity provides an example. Its effective force

law isn’t really a power law, but the force increases faster than 1/r2, and close enough to

a really compact object (a black hole or neutron star), circular orbits are unstable. Matter

that gets that close spirals in quickly. The existence of such unstable orbits is crucial to the

understanding of compact objects and the astrophysical phenomena that arise from them.

Our last task today will be to consider some aspects of the potential from a nonspherical

mass. This will give us some practice in perturbative expansions, and will be our first

encounter with tidal forces.

As usual, we’ll simplify to the max. Rather than thinking about an arbitrary nonspheri-

cal distribution, we’ll consider the potential produced by two point masses. Suppose that the

masses are m0 and m1, that they are separated by a distance R, and that we are interested



in the potential energy of a particle of mass m2 that is a distance r away from the center of

mass. We also need an angle: we’ll assume that the angle made from m2, to the center of

mass, to m1, is φ.

The total potential of m2 is

V = −Gm0m2/r02 − Gm1m2/r12 , (15)

where r02 is the distance from m0 to m2 and r12 is the distance from m1 to m2. Let’s define

a0 to be the distance from the center of mass to m0 (so that a0 = Rm1/(m0 + m1)), and

a1 = Rm0/(m0 + m1) to be the distance from the center of mass to m1. Then by the law of

cosines,

r2
02 = r2 + a2

0 + 2ra0 cos φ , r2
12 = r2 + a2

1 − 2ra1 cos φ . (16)

We’d like to do a perturbative expansion, that is, we want to know just the lowest order

effect of this nonspherical distribution. We therefore assume that r ≫ R, and expand in

a0/r and a1/r. We therefore start by writing

r2
02 = r2

[

1 + 2(a0/r) cos φ + (a0/r)
2
]

, r2
12 = r2

[

1 − 2(a1/r) cos φ + (a1/r)
2
]

. (17)

We need 1/r02 and 1/r12, so we need expansions of a square root and a reciprocal. Normally

we’d just do this to first order, but as you’ll see we actually need second order for this

calculation. To second order, for a quantity ǫ ≪ 1,
√

1 + ǫ ≈ 1 + ǫ/2− ǫ2/8 and 1/(1 + ǫ) ≈
1 − ǫ + ǫ2. Applying these, and doing a little simplifying, we get

1

r02

≈ 1

r

[

1 − a0

r
cos φ +

a2
0

2r2
(3 cos2 φ − 1)

]

,
1

r12

≈ 1

r

[

1 +
a1

r
cos φ +

a2
1

2r2
(3 cos2 φ − 1)

]

.

(18)

To get the total potential, it is most useful to separate out into powers of R/r, after we’ve

written out the expressions for a0 and a1:

V ≈ −Gm0m2

r
− Gm1m2

r
+ Gm0m2

r
m1

m0+m1

R
r

cos φ − Gm1m2

r
m0

m0+m1

R
r

cos φ

−Gm0m2

r

m2

1

(m0+m1)2
R2

r2

1
2
(3 cos2 φ − 1) − Gm1m2

r

m2

0

(m0+m1)2
R2

r2

1
2
(3 cos2 φ − 1)

(19)

Notice that the R/r terms cancel! If we now define M ≡ m0 + m1 (total mass) and µ ≡
m0m1/(m0 + m1) (reduced mass),

V ≈ −GMm2

r

[

1 +
µ

M

R2

r2

1

2
(3 cos2 φ − 1)

]

. (20)

As always, after doing a derivation we need to check it. First, are the units correct?

The factor GMm2/r out front has the right units, so we need to know if the quantity in

brackets is dimensionless. The 1 certainly is. The other term is a product of two things that

are clearly dimensionless (µ/M is, because both are masses, and R2/r2 is, because they are



both squared lengths). The remaining factor is also clearly dimensionless. Therefore, the

units are correct. What about symmetry? The potential obviously can’t change if we simply

decide to relabel the masses so that m0 becomes m1 and vice versa, so our expression needs

to reflect that and it does. What about limits? If, say, m1 ≪ m0 then the potential should

reduce to that of m0 by itself. Does it? In that case, M ≈ m0 and µ ≪ M , so the potential

becomes −Gm0m2/r, as it should. When r → ∞, the mass distribution looks like a point

and therefore the potential should look like the potential from a point mass, and it does.

These checks give us more confidence that we’re on the right track.

The form of this potential tells us a number of things. First, it gives an idea of how

much the potential (and therefore the force) deviates from the potential of the total mass, as

determined by the distance from the center of mass. As R/r becomes smaller, the deviations

become much smaller; when R/r < 0.1, it’s less than 1%, for example. Second, a particle

orbiting in this potential sees variation with φ. Ask class: what does this mean about

the angular momentum? It means that the angular momentum of the particle’s orbit is not

constant. In fact, this is one aspect of tidal coupling. Angular momentum can be transferred

from spin to orbit or vice versa. We’ll encounter more about such potentials when we discuss

three-body gravity.


