
Accretion and tidal forces

We’ve now gone far enough that we can start to consider specific astrophysical

applications. In this class, therefore, we will apply our knowledge to two gravitationally

related topics: accretion and tides.

We’ll start with accretion. Although there are many aspects of accretion that

depend critically on nongravitational processes (for example, emission of radiation!), we’ll

concentrate on gravitation and conservation laws. Continuing our discussion of Lagrange

points, let’s suppose that we have a star system consisting of two main sequence stars. Say

that the stars are separated by enough that both of them are well within their Roche lobes;

that is, their radii are much smaller than the distance to the L1 point. Ask class: will

there be any flow of matter from one star to the other? No, because all the mass in the

system is gravitationally dominated by one star or another. Therefore, just like a particle

that is in orbit around one star, ten times closer to it than the particle is to the other star,

any gas in either star will simply stay with its parent. Ask class: in such a system, is

there any way that there can ever be mass transfer? Yes! When a star evolves off the main

sequence, it swells and becomes a red giant or supergiant. This can produce a radius of

1–10 AU, typically, so if the stars were within a few astronomical units of each other then

they will transfer mass during their lifetimes.

Now suppose that one of the stars (Star 1) has expanded so that it is just slightly larger

than its Roche lobe. Think of a molecule of gas that is closer to the other star (Star 2)

than the L1 point. To be clear, suppose that the other star is still way inside its Roche

lobe. Ask class: what happens to it? The molecule gets inside the region of influence of

the other star, but it does not have to fall onto that star immediately! The easiest way

to understand this is to think of angular momentum. Relative to Star 2, the molecule has

significant angular momentum per unit mass when it flows over past the L1 point. In order

to fall onto the star, the molecule must get rid of a lot of angular momentum. By itself, it

can’t do that. There might be some gravitational interactions with both stars, but these

are likely to be chaotic and the molecule may well be ejected from the system. You can try

this yourself with Doug Hamilton’s orbit integration codes, linked to this class’s web page.

Accretion, therefore, is linked up with the question of how angular momentum can

be moved around. If the molecule can lose angular momentum relative to Star 2, it

can eventually accrete onto that star. Nongravitational forces are one way to do this.

Heuristically, imagine now that it isn’t just one molecule, but a stream of gas that flows

over the L1 point from Star 1 to Star 2. The stream of gas will move around Star 2 and

come back to nearly its starting point near L1, but at that point the stream will intersect

itself. This intersection causes shock heating, viscous interactions, and other stuff that

allows transfer of angular momentum. Now let’s think about the geometry of the situation.



Ask class: when considering all the gas together, will there be a net sense of the angular

momentum? To answer a question like this, it is often helpful to determine whether there

is a “special” direction in the problem, or if all directions are equivalent. In this case there

is a special direction: the angular momentum axis of the binary itself. Therefore, yes, there

will be a net sense of the angular momentum of the gas that flows onto Star 2. As a result,

the gas will not flow in spherically, but with an axis; as it spreads out, the gas will form a

flattened shape called an accretion disk.

Now let’s consider some aspects of this problem from the point of view of conservation

laws. We’ll simplify by ignoring Star 1 and thinking about two particles, each of mass m,

that are orbiting in a circle of radius r around a star of mass M . Ask class: what is the

total angular momentum of the orbits? It’s 2m
√

GMr. Now suppose that somehow (e.g.,

through interactions between the two particles), one of them is moved to a radius r1 = r/2.

We can solve for the orbital radius of the other by conservation of angular momentum:

m
√

GMr1 + m
√

GMr2 = 2m
√

GMr
√

r/2 +
√

r2 = 2
√

r

r2 = (2 − 1/
√

2)2r ≈ 1.67r .

(1)

Fine, so that’s set. Let’s check conservation of energy. In a circular orbit, the total energy

is half the gravitational potential energy. Ask class: what is the total energy initially? It’s

E = −2GMm/(2r) = −GMm/r. Ask class: how about after the particles have moved?

Then it’s E = −GMm/(2r/2) − GMm/(2 × 1.67r) ≈ −1.3GMm/r. Ask class: how can

this have happened? This means that substantial energy was released in this movement,

likely in the form of radiation. Therefore, spreading of a disk of gas can release energy, but

the angular momentum stays within the system unless there is escape of matter. This is

one reason why conservation of angular and linear momentum is often much easier to track

than conservation of energy.

This, however, can give us a handle on how much total energy is released during

accretion. Suppose that the star has mass M and radius R. If, in steady state, mass flows

from very far away from the star to come to rest on its surface, and the rate of mass

accretion is Ṁ , then Ask class: what is the luminosity produced? It’s GMṀ/R. For

compact objects, this can be a lot; coming to rest on a neutron star’s surface releases 30–50

times more energy per mass than is released in hydrogen fusion!

Let’s back up now and think about the angular momentum of the system as a whole.

Consider a system in which the lower-mass star is transferring mass to the higher-mass

star. Ask class: can they think of an example in which this might occur? A black

hole in a binary with a solar-mass star is one possibility. To clarify the picture, suppose

that the higher-mass star has mass M , and the lower-mass star has mass m ¿ M . Ask

class: what is the orbital angular momentum, roughly, for an orbital separation r? It’s



about m
√

GMr. Now suppose that mass transfer has occurred so that the smaller star

has diminished to m/2. Ask class: what is the new orbital radius, assuming angular

momentum conservation? It must be 4r, to keep L constant. But that’s a problem! The

Roche lobe radius scales as r(m/M)1/3, so the Roche lobe radius goes up by more than a

factor of 3. If the small star is on the main sequence, its radius decreases with decreasing

mass. Therefore, if it was just barely transferring mass before, after some mass has been

donated it doesn’t anymore.

Ask class: does this mean that once a light star starts to donate to a heavy star,

it will shut itself off permanently? No, it can keep going. One way is if the light star

evolves to a larger radius. Another is if there is a way to lose angular momentum. For

example, many stars have winds, meaning that some matter can go to large radii (and,

indeed, leave the system entirely). If the matter in the wind is connected magnetically to

the star, then the wind will carry away angular momentum, slowing down the spin of the

star. Spin-orbit coupling through tides (which we’ll discuss later in this lecture) then takes

away angular momentum from the orbit, bringing the stars closer together and continuing

the mass transfer. For more compact binaries, gravitational radiation can drain the system

of angular momentum.

Now consider the opposite case, of a massive star donating matter to a lighter star. Ask

class: what might be an example of this? A high-mass star (say, 10 M¯) can be in a binary

with, say, a 1.4 M¯ neutron star. It’s paradoxical, because a high-mass star evolves faster

than a low-mass star, but a high-mass star can lose enough mass (through winds, accretion,

or even a supernova) that it ends up having less mass than its companion. Ask class: with

angular momentum considerations, what happens to the orbit as the high-mass star loses

mass to the lower-mass star? The orbit tightens. This, therefore, is an unstable situation:

if the higher-mass star overfills its Roche lobe, then if mass transfer is conservative (i.e., all

the lost mass ends up on the companion star), the stars get closer together. This may cause

them to spiral in together, leading to so-called common envelope systems.

The example of accretion and accretion disks shows that one can often learn quite a

lot about systems by tracking where the angular momentum goes. Even in cases where

this doesn’t provide an answer, it can at least clarify important questions. For example,

consider the formation of a star from a molecular cloud. The cloud might have a density

of 104 particles per cubic centimeter, so a 1 M¯ patch of the cloud would have a radius of

roughly 1 pc. It will have some rotation, from motion through the galaxy if nothing else.

Ask class: to order of magnitude, what is the angular momentum of a spherical blob of

mass M and radius R, spinning at an angular frequency Ω? It’s about

L ≈ MΩR2 , (2)

which one can get from units or other considerations. If a cloud shrinks and keeps its angular



momentum and mass, then this means its spin frequency must scale as Ω ∼ R−2. However,

note that the orbital frequency scales only as ΩK ∼ R−3/2; so as the cloud contracts

the ratio of angular frequency to Keplerian orbital frequency increases. If something is

spinning faster than its orbital frequency, it will break apart. Consider the Sun. If the

initial frequency of spin of the molecular cloud is no less than 1/2 × 108 yr−1 ≈ 10−16 s−1

(this is the rotation period of the Galaxy), then by the time it has contracted from 1 pc

to 7 × 1010 cm (the radius of the Sun) its spin frequency would have to be about 0.4 s−1,

so the Sun would have a spin period of less than three seconds! Obviously absurd. The

conclusion is that contracting stars must lose almost all their angular momentum during the

protostellar phase. There has been a lot of work focused on finding out how this happens,

but I’ll leave it to you to look up the ideas!

We will now switch our focus to another phenomenon that may be considered as part of

a “2+1” body problem: tides. The external gravitational field of a spherical star or planet is

exactly the same as that of a point at the object’s center. However, this does not mean that

the object itself responds to gravitational fields in the same way that a point mass does!

Ask class: what is the difference? For an extended object in a gravitational field, different

parts of the object are at different distances from the source of the field, so they experience

different accelerations. Indeed, from the general relativistic standpoint, this is the only

way gravity can exert a force that can be felt; if a point mass falls freely in a gravitational

field it feels no “push” or “pull”. However, if an extended object (like a person!) is in a

gravitational field, then even when freely falling there are different accelerations at different

points. This would be felt as a push or pull, which could grow to fatal proportions if there

is a plunge into a black hole!

Now consider the Earth-Moon system. Both objects exert tides on each other. This

raises tidal bulges. In the case of the Moon, it is in synchronous rotation, meaning that as

seen from a distant location it spins at the same angular velocity that it orbits. It got that

way because if it were to spin faster than the orbit, the tidal bulge would lag the spin and

therefore slow it down, and vice versa. The Moon is small enough (and the Earth’s gravity

large enough) that there has been enough time for synchronization. On the other hand,

the Earth has not come into synchronous rotation. The Pluto-Charon system is mutually

synchronized.

Let’s investigate this a bit more by following angular momentum. Ask class: if angular

momentum is conserved in the Earth-Moon system, what has to happen as the Earth’s spin

is slowed down? The angular momentum must be placed somewhere else, in this case the

orbit. That means that the orbit expands (since the angular momentum goes like
√

GMr,

larger L means larger r). Suppose that the Sun were eternal (i.e., no nasty evolution to

worry about). Ask class: by conserving angular momentum, what would be the long-term

evolution of the Earth-Moon system? As the Earth slows down, the orbit expands. This



will continue to take place until the Earth is in synchronous rotation with the orbit. That

can happen, because the Earth has a smaller moment of inertia than the Earth-Moon

system, meaning that its spin angular velocity will drop faster than the orbital angular

velocity. Now consider the effect of the Sun. The Earth-Moon system orbits the Sun, and

the orbital rate of one per year is much less than the time for the Moon to go around the

Earth. Therefore, angular momentum is taken out of the Earth-Moon orbit.

What happens now? Ask class: how does the Earth-Moon separation change as

a result? It shrinks. That means that the orbital angular velocity is greater than the

spin angular velocity of the Earth or Moon. Ask class: now how is angular momentum

transferred? Orbital angular momentum is then given to the spins. The decrease in orbital

angular momentum means that the Earth and Moon get closer together, so they orbit even

faster, and again give angular momentum to the Sun/Earth-Moon orbit. Net result: the

Earth and Moon move slightly farther from the Sun, but they themselves get ever closer

until they collide! This will, however, take much longer than the evolution time of the Sun.

As a final cool example of tides, consider Mars and its moon Phobos. Phobos is actually

orbiting inside the synchronous radius, i.e., its orbit is faster than the spin period of Mars.

The spin angular momentum of Mars is much greater than the orbital angular momentum

of Phobos, due to an enormous mass ratio. Ask class: how will this system evolve?

Phobos will raise a tidal bulge on Mars that will speed up Mars’ rotation slightly. This

will therefore take angular momentum away from Phobos. This causes the orbital radius to

drop, so Phobos speeds up further, and the process is a runaway. In fact, the best guess is

that Phobos will crash into Mars in about 30 million years. It’s a bit of a mystery why it

should be in this orbit, but maybe it’s just happenstance.


