
General three-body interactions

We’ve been dancing around the general three-body problem, but let’s imagine we’ve

bitten the bullet and decided to do it for real. Three objects, arbitrary masses, arbitrary

positions, arbitrary velocities. What happens? A nasty mess is what happens. Oh, well,

we can just give it to a computer and solve, right? Wrong! Sure, we know the forces

and therefore the accelerations of each object, so given the initial positions and velocities

we have all the information we need in principle. In practice, however, general, close,

interactions of three comparable mass objects give you chaos. This has a precise definition:

a system is chaotic if slightly different initial conditions lead to behavior that deviates

exponentially with time.

Let’s clarify this by first thinking of a system that is not chaotic. Consider circular

orbits around a large mass M . Think of two dust particles, one of which orbits at radius r1

with angular frequency Ω1, and the other of which orbits at r2 ≈ r1 with angular frequency

Ω2 ≈ Ω1. Start them at the same angle φ0. Then, as a function of time t, the first particle

has an angle φ1 = φ0 + Ω1t, and the second has an angle φ2 = φ0 + Ω2t. The difference in

angles is φ2 − φ1 = (Ω2 − Ω1)t, which therefore grows linearly with time.

In contrast, the weather is a classic system that is chaotic. Suppose you take your

best measurements of the current state of the weather in your area (e.g., temperature,

pressure, humidity, etc.). You plug this into your weather model to predict the temperature

at noon in the next week. Various errors in measurement mean that, say, after one day

the temperature may be 1◦C different than you predicted. After two days, it could be

2◦C different. After three days, 4◦C; after four days, 8◦C. Generally, your uncertainty in

temperature could be written ∆T = 2t/1 day ◦C. Therefore, the initial conditions deviate

exponentially with time.

This is the case with a closely interacting three-body system. It means that, no matter

how careful you are in specifying initial conditions, on the timescale of exponential growth

of deviations (sometimes called the Lyapunov timescale) your accuracy will degrade quickly.

Therefore, in a practical sense, even a computer can’t do a perfectly accurate three-body

integration forever.

Time to give up? No! Even if the three-body problem of interest is chaotic (and many

aren’t), being chaotic emphatically does not mean that any state is accessible. Consider

again the problem of the weather. If you continued the exponential uncertainty, it would

imply that within two weeks the uncertainty would be more than 4,000◦C!! Of course

there are bounds to what the system can do. In addition, there are some long-term trends

that exist in chaotic systems. For example, although you may not be able to predict the

temperature of a given day in June in Washington, you are safe in assuming that in the



overwhelming majority of cases it will be warmer than a given day in January in Washington.

Seasons are much easier to predict than specific days. Similarly, in the three-body problem,

one can use conservation of energy, linear momentum, and angular momentum to place

bounds on possible outcomes. In addition, even if a computer simulation deviates from the

“true” result, the trends visible in many simulations of a given interaction are likely to be

valid.

With that in mind, let’s think a bit about stability. Suppose you have two stars of

equal mass orbiting each other at a constant separation of 1 AU. Ask class: what will be

the motion of a small planet that initially is moving in a circle of radius 10 AU centered

on the center of mass? It is only slightly changed from the orbit it would have around a

single object, because at that distance the force from the two stars is close to that from

one star with the combined masses. Ask class: what happens as the initial orbital radius

is decreased? Then the deviations from a 1/r2 law become more and more pronounced, so

perturbations of the orbit become more serious. When the orbit comes too close (typically

a few times the semimajor axis of the stars, where a few is ∼ 3), then after just a few

orbits the planet is ejected. Ask class: what if the planet is ten times closer to one star

than to the other? Then it orbits primarily around one star, so again the orbit is relatively

stable. Think, for example, of the orbit of the Moon around the Earth. The Sun applies a

torque, but the orbit is nicely stable anyway because the Moon is well within the Earth’s

Hill sphere.

Now let’s go to something a bit more dramatic, which I’ve been thinking about in the

last couple of years. Suppose that you have a binary (composed of stars B1 and B2), and a

single star (S) comes along and interacts with the binary. Let’s treat all three stars as point

particles for the moment. There will be some outcome of the interaction. Knowing nothing

further for the moment, Ask class: what are possible results of the interaction, assuming

Newtonian gravity? This is an issue that can be addressed using conservation laws. If we

have a general interaction of this sort, we still have a limited set of outcomes: (1) the binary

is disrupted, and all three stars move along as single stars, or (2) after the interaction, S

still is a single star and B1 and B2 still form a binary, or (3) S and B1 are in a binary and

B2 moves on as a single, or (4) S and B2 are in a binary and B1 moves on as a single. You

might think that possibly (5) all three stars end up in a triple system, but in fact a triple

system that is stable indefinitely is not possible in a single-binary encounter. Ask class:

why might this be? It’s not easy to think of, but the reason is that the paths are reversible.

Therefore, since originally it was a binary and an unbound single star, eventually it will

return to that state (or to a state of three isolated stars). This isn’t obvious, but it’s true

and worth thinking about. If there is some way to dissipate energy, such as in tides or in

gravitational radiation, then one can in principle get a stable hierarchical three-body system

out of this interaction.



To make more progress in understanding binary interactions, let’s back up and think

about what happens when two (pointlike!) objects of equal mass interact gravitationally

with each other as they pass by. Suppose we have two stars that are not bound to each

other (i.e., they are hyperbolic). As measured in, e.g., the center of mass frame of a globular

cluster, let the stars both initially travel in the x̂ direction. That means that the center of

mass between the two stars also travels in the x̂ direction: vCM = vCMx̂. In this center of

mass frame, since by assumption the stars have equal mass they must have equal speed:

v1 = v0x̂ and v2 = −v0x̂. In the CM frame, the net result of the interaction will be that

both stars are deflected by an angle θ. Ask class: why is the deflection angle the same

for both? Because otherwise linear momentum would not be conserved in the CM frame.

In this frame, each star still has a total speed v0. Ask class: why? This comes from

conservation of energy. Therefore, after the interaction, the new velocities in the center of

mass frame are
v1,CM = v0 cos θx̂ + v0 sin θŷ

v2,CM = −v0 cos θx̂ − v0 sin θŷ .
(1)

We can add this to the center of mass velocity to find the total speed of each star relative

to the cluster, after the interaction:

|v1| =
√

(vCM + v0 cos θ)2 + v2
0 sin2 θ

=
√

v2
CM + v2

0 + 2v0vCM cos θ

|v2| =
√

(vCM − v0 cos θ)2 + v2
0 sin2 θ

=
√

v2
CM + v2

0 − 2v0vCM cos θ .

(2)

What does this mean? Suppose that vCM > 0 and v0 > 0. From our definitions, that means

that star 1 was moving faster than star 2, as seen in the cluster frame. Its original speed

was v1 = vCM + v0 =
√

v2
CM + v2

0 + 2v0vCM. After the interaction, unless cos θ = 1 (which

would be equivalent to no interaction at all!), star 1 has a speed less than its initial speed.

Star 2, on the other hand, has sped up. Therefore, energy has been transferred from the

faster star to the slower star.

The idea that energy flows from the more energetic to the less energetic star is

reminiscent of thermodynamics, and we’ll hear a lot more about such parallels in future

lectures. If one considers all angles of encounters, one finds that for equal-mass stars the

“stable” distribution of velocities is a Maxwell-Boltzmann distribution, just as for molecules

of a gas.

Now we get to return to binaries. Suppose that one has a “soft” binary, where both

stars are of equal mass, which is the same as the mass of the single stars. By “soft” in this

circumstance we mean that the speed of the two stars in their binary orbits is less than the

speed of a single star in the cluster. If we go through conservation of energy and angular

momentum, we conclude that an encounter between this binary and a single star could have



any of the four allowed outcomes we discussed earlier. However, in reality the tendency is

for the binary to become wider, i.e., softer, after the encounter. Let’s see why.

Consider the limit of a very soft binary, and imagine a single star passing much closer

to one star than to the other. A really soft binary orbits very slowly, so we’ll ignore the

orbit and just imagine that the single star has a quick close encounter with the closer star.

When this happens, since the single star is moving faster than the binary star, the tendency

is for the binary star to gain energy. But a larger positive energy means a wider binary

orbit, given that E = −Gm1m2/(2a). Therefore, typically, soft binaries get softer.

Another important point is this: I assert that for a very soft binary, the typical change

of energy in an encounter with a single star does not depend on how soft the binary is. Ask

class: why would that be true? From the treatment above, when v2 ¿ v1, vCM ≈ v1/2 and

v0 ≈ v1/2, so the exact value of v2 doesn’t matter. Only v1 and θ matter. Therefore, the

change in energy is roughly independent of the original binding energy of the binary. Ask

class: what does this imply about the eventual fate of soft binaries? Since energy keeps

getting pumped into the binaries, eventually the total energy will be positive, meaning that

the binary is disrupted! This is called evaporation. A very soft binary tends not to last very

long.

What about the other limit, of hard binaries? Again, consider the interaction between a

single star and a binary composed of two stars each having the same mass as a single star.

Define “hard binary” as a binary having a binding energy greater than the kinetic energy

of the single star. Ask class: what are the possible outcomes of such an interaction? Since

the total energy of the system is negative, we can’t have an “ionization” in which all three

go their way separately. The final result must be a single and a binary, although which stars

end up in the binary depends on details.

Those details, unfortunately, absolutely require a computer. In the soft binary case we

could make the approximation that the binary doesn’t orbit during an interaction with a

single star. Here, the binary goes through at least one orbit during the interaction. In fact,

numerical simulations show that sometimes there can be tens, hundreds, even thousands of

orbits before the system finally resolves itself into a binary and a single (these are called

“resonant” interactions). What are we supposed to do? Luckily, analysis of endless numbers

of simulations have revealed useful rules of thumb. That is, there are tendencies, but not

absolutes.

One such tendency is that after the interaction, the binary tends to be tighter than

it was originally. For three equal-mass stars, the semimajor axis shrinks by an average of

about 20%. Again, this is not an absolute; it is possible that the binary will expand after

a particular interaction, even if the binary is hard. However, usually the binary gets more

compact. Heuristically, you can think of this as follows: the typical ejection speed of the



single (when the encounter is finally over) is of order the binary orbital speed. Since the

binary is hard, the orbital speed is greater than the speed that the single star had initially.

Therefore, the single star has gained kinetic energy. Conservation of energy then means

that the binary has a more negative orbital energy, therefore it is tighter. Combined with

the rules for soft binaries, we have “Heggie’s laws” (named after Douglas Heggie, a pioneer

of such studies): hard binaries get harder, and soft binaries get softer.

Another tendency is that if the three stars are of unequal mass, then most probably the

final binary will consist of the two most massive of the three stars, if the interaction was a

close interaction. Among other things, this means that heavy things in clusters (such as

black holes) have a good shot of ending up in a binary even if they started their lives alone.

There is wonderful richness and complexity in three-body interactions, and things are

being discovered even today. In the next couple of lectures, we’ll go beyond three bodies to

see what tendencies exist when a large number of objects interact gravitationally.


