
Special topic: binary supermassive black holes

We are now in a position to address an interesting current topic in astrophysics related

to binary supermassive black holes. The basic question is: since most or all galaxies have

massive black holes in their centers, and galaxies often collide, with the black holes merge

with each other? If so, this will provide a strong source of gravitational waves. I’m drawing

on a lot of sources here, but I’ve been particularly enlightened by discussions with Steinn

Sigurdsson (Penn State) and David Merritt (Rutgers).

Stars, with typical radii of ∼ 1011 cm, are much smaller than their typical separation

(∼ 1018−19 cm in the disks of galaxies). Therefore, in the bulk of galaxies there are

rarely star-star collisions. Galaxies, however, have a non-negligible size compared to their

separations: a galaxy might be 1023 cm in radius, and 1023−24 cm from its nearest neighbor

galaxy. In fact, galaxies tend to cluster, so that if you have one galaxy then another one

is most probably nearby. Galaxies therefore often collide, but it’s a “collisionless collision”

meaning that the interactions are mostly gravitational (with the minor exception of the

interstellar mediums interacting, which we’ll ignore because that’s a small fraction of the

total mass).

We know in addition that most or possibly all galaxies have supermassive black holes

in their centers. These black holes have a typical mass that is about 0.2% of the mass of

the central bulge of the galaxy. Currently detected masses range from around 106 M¯ (our

Milky Way has a 2.6 × 106 M¯ black hole) to several billion solar masses (the galaxy M87,

in the center of the Virgo Cluster of galaxies, has a black hole of mass 3 × 109 M¯). If

two such black holes were to collide or merge, they would produce abundant gravitational

waves, easily detectable by planned space-based instruments. But does this happen?

The first thing is that, clearly, a typical galaxy-galaxy collision will not be so precisely

head-on that the central black holes hit each other directly. Angular momentum guarantees

that. The collisions will instead be oblique, so on the first pass the black holes will miss

each other by a lot, maybe several kiloparsecs. Ask class: what comes next? The initial

collision is obviously strongly time-dependent. Therefore, there is a phase in which the

system virializes over a few orbits. This will typically take a few hundred million years.

Incidentally, collisions of the interstellar mediums with each other can produce a huge

rate of star formation in this period. You see that in the Antennae, a well-known pair of

colliding galaxies with lots of young stars.

Now suppose that phase is over and the system has relaxed into some kind of equilibrium.

The two black holes are still far away from each other, say a couple of kiloparsecs. Ask

class: what happens now? We found before that more massive objects tend to sink to the

center of a mass distribution. This will cause the massive black holes to get closer to each



other and to the center. To understand more about this, however, we need to consider the

process of dynamical friction.

When we thought previously about the sinking of massive objects, we considered

individual interactions. Now let’s say that the object in question is much more massive

than other stars, as will be the case for our black holes. Then we can think of the motion

of the massive object as creating a wake as it moves past the background stars. That is,

the gravity of the object will focus the background stars and give them extra energy. This

energy must be taken out of the kinetic energy of the massive object. This therefore leads

to a drag, or a frictional effect, even though this is pure gravity and there isn’t actually any

net dissipation in the system.

To be more quantitative, suppose that an object of mass M is moving with speed v in

the x direction through a zero-velocity background of stars of mass m ¿ M . Therefore,

relative to the massive object, all the stars are moving with speed −v. Therefore, from

previously, all of them get a y-velocity

vy = −2GM/(vb) , (1)

where b is the impact parameter. From energy conservation, the change in the speed of M

is

Mv∆v = −mv2

y/2 ⇒ ∆v = −2mG2M/(v3b2) . (2)

As before, the number of encounters per time with stars that have impact parameters

between b and b + db is vn2π b db, where n is the number density of background stars, so

dv/dt =
∫

∆v · vn2π b db

= −(2mG2M/v3)2πn
∫

b db /b2

= −(4πnmG2M/v3) ln(bmax/bmin)

(3)

where as before bmax ∼ R, the size of the system, and bmin ∼ GM/v2, for the small-angle

approximation to apply. As before, we have a logarithm, so the precise limits of the impact

parameter don’t matter too much. This type of logarithm appears in many problems in

which the force law is like 1/r2, such as gravity or the Coulomb force. One’s ignorance about

the details can be swept under this logarithm, which is often called a Coulomb logarithm.

In fact, one commonly defines Λ ≡ bmax/bmin, so that ln Λ ∼ 10 is the Coulomb logarithm.

Note that only the product nm enters, so that it is actually the background density

ρ = nm that determines the rate of change in velocity (there is also a weak dependence

that comes into the logarithm). The change in speed can be related to the change in kinetic

energy of the massive object:

dEK/dt =
d

dt

(

1

2
Mv2

)

= vM(dv/dt) = −4πρ(GM)2 ln Λ/|v| . (4)



Note that this is a genuine drag, which always operates opposite to the direction of motion.

As we discussed before, orbits in a gravitational potential have negative energy, so the

loss of kinetic energy causes the massive particles to sink to the center. The actual time

necessary to get to the center depends on the velocity dispersion of the surrounding stars

as well as M and ρ. For typical values, it’s about

tsink ∼ 1011 yr(M/107 M¯)−1(r/100 pc)2 . (5)

Here we assume that the particle is at a distance r from the center. Note that this is much

shorter than the relaxation time, because of the high mass assumed for the object.

Before resuming our analysis of binary supermassive black holes, a couple of comments

about other applications. In a cluster of galaxies, dynamical friction of large galaxies

against small galaxies and dark matter can cause those galaxies to sink to the center and

merge. This is thought to contribute to the formation of CD galaxies, which are massive

ellipticals in the center of some galaxy clusters. In globular clusters, the sinking of massive

objects can cause a “gravothermal catastrophe”, in which a central minicluster of high-mass

stars or stellar remnants undergoes a collapse that can lead to high densities and violent

interactions.

Returning to black holes, equation (5) above may seem to suggest that only the more

massive black holes could merge in less than a Hubble time of ∼ 1010 yr. For example, if r

is several kiloparsecs, as would be expected for a typical encounter, then two 106 M¯ objects

might take 1012 yr to sink to the center. However, it is thought that in reality even such

low-mass black holes will come together fairly quickly. Remembering the environments that

the black holes originally inhabited, Ask class: can they think of what might speed up the

sinking? Since a supermassive black hole is in a bulge that has ∼ 500 times the mass of the

black hole, at least initially the collection of matter acts together, so M is effectively 500

times larger. This causes initially rapid sinking. Ask class: will this continue indefinitely?

No, because when the two distributions star to overlap, tidal effects will strip away the stars

from around the black holes. However, by that point it is likely that the holes themselves

are close enough to continue sinking towards each other in less than a few billion years.

It seems, therefore, that we’ve answered our question: binary supermassive black holes

will happily drift towards the center, where they will eventually merge with each other.

Ask class: is there anything that might eventually make the process of dynamical friction

less efficient? Yes! At some point, when the holes are close enough to each other, they will

run out of stars with which to interact. You can see the effect by considering conservation

of energy. Suppose that two black holes of mass M are a distance R from each other. In

that same region is a collection of stars of total mass Nm. Imagine that the black holes

eventually eject all the stars, with small speed at infinity. The original total orbital energy

of the black holes was roughly −GM 2/(2R) and of the stars was of order −G(Nm)2/(2R),



so if the stars end up with zero energy then the energy of the black holes in orbit is

−GM2/(2Rf ) = −GM 2/(2R) − G(Nm)2/(2R)

Rf = R[M 2/(M2 + N2m2)] .
(6)

Therefore, in order to make a significant change in the orbital separation of the black holes,

the holes must interact with an amount of mass roughly equal to their own mass. The

central densities of galaxies can be of order 106 M¯ pc−3, so this suggests that two 106 M¯

black holes can only get within about 1 pc of each other before they start to run out of

stars to throw to infinity.

Whoops! Does this mean that we expect many galaxies to harbor supermassive black

holes orbiting around each other at a distance of a parsec? Ask class: what other effects

might come in? There are several possibilities that have been discussed.

First, consider gravitational radiation. Two massive things orbiting around each other

produces waves in spacetime that carry away energy. This loss of energy will cause a

shrinkage of the orbit, and eventual coalescence. The problem is that the rate of inspiral

depends very strongly on the semimajor axis (as a4), and for typical supermassive black

holes the separation needs to be < 0.01 pc before gravitational radiation can bring them

the rest of the way in.

Second, think about the way in which the stars interact. In particular, imagine a

single star of typical mass that comes near the binary black hole. It will feel a strongly

nonaxisymmetric, time-dependent force, and will therefore be batted around before finally

being ejected. However, when it is ejected it has an impact parameter that is comparable

to the semimajor axis of the binary. Thus, unless it is thrown out with such force that it

escapes the galaxy entirely, it will return with roughly the same impact parameter it had

before (because its orbit will hardly be altered by the other stars). Each star therefore

has more of an effect than you might have thought, and becomes negligible only when the

binary has shrunk to a factor of a few less than its original semimajor axis, because then

the star will completely miss the binary on its next orbit. This effect, while important, is

not enough by itself.

Third, what about motion of the binary itself? All the interactions with stars will

impart recoil to the binary, so it wanders around in the core region. In principle, if it

wanders far enough, it can get fresh stars with which to interact, and all is well. In practice,

however, supermassive black holes don’t wander by more than 0.01 pc or so, which isn’t

enough.

Fourth, what about other stars that might come in to interact with the binary? Even

if the binary acts like an eggbeater to kick out all of the stars originally within 0.1–1 pc of

the core, there are other stars farther out that have orbits that bring them into the core.

The problem here is that once those stars are exhausted, then in a spherically symmetric



distribution it will effectively be forever until those orbits are replaced by other stars,

meaning that no more stars come in to interact. Ask class: why would it take so long in

a spherically symmetric potential? It’s because, once the near-radial orbits are exhausted,

it takes something like a relaxation time to repopulate them. That’s much longer than a

Hubble time. More massive objects (such as O or B stars or stellar-mass black holes) can

sink more quickly, but probably not quickly enough.

Okay, so is there any other way? We assumed spherical symmetry in the distribution

above; with that hint, Ask class: can they think of another possibility? My favorite idea

among those I’ve heard is that if the central region of a galaxy is not spherically symmetric,

but instead triaxial, then the orbits of the stars are box orbits. As we mentioned last

time, such orbits do not individually conserve angular momentum. They can therefore pass

arbitrarily close to the center. This means that it’s only a few orbits until the center has

lots of stars to interact with the binary, instead of 0.1N/ ln N orbits. I like this because it

seems reasonable that after a galaxy collision one wouldn’t have spherical symmetry. We’ll

see what future calculations have to say, but I wouldn’t be surprised if this is the answer.

One would then find that supermassive black holes commonly merge in the universe, which

would be exciting as a source of gravitational waves and as a way to learn about strong

gravity and associated extreme physics.


