
Failure of Hydrostatic Equilibrium

Most things in the universe that are supported by pressure are in approximate

hydrostatic equilibrium. Why? Ask class: what would happen if an object were

dramatically out of hydrostatic equilibrium? It would then evolve dynamically. Ask class:

on what typical timescale would it evolve? If gravity is unopposed, then the object will

collapse or explode, on roughly a free-fall time scale. To order of magnitude, this is the same

as the orbital timescale, or
√

R3/(GM), where M is the mass and R the typical radius of

the object (it doesn’t have to be spherically symmetric). The average density is ρ̄ ∼ M/R3,

ignoring inconvenient factors of 4π/3 or whatever, so the dynamical time is tdyn ∼ 1/
√

Gρ̄.

For ρ = 1 g cm−3, the density of water (or the Sun, roughly), the dynamical time is about

an hour.

Ask class: so, why is it that such a tiny minority of astronomical objects is seen to

be dramatically out of hydrostatic equilibrium? It’s because such an object evolves so fast

that we have little chance to see it in that state. Ask class: what is an example of an

object that is far out of hydrostatic equilibrium? A supernova! However, a star that goes

supernova in another galaxy (i.e., almost all of those seen) might be visible to us for a few

years, whereas the typical parent star lives for tens of millions of years, so the supernova

(and its evolving remnant) is only visible for ∼ 10−7 of the lifetime. The core collapse itself

lasts only a few seconds. Ask class: why are so many supernovae seen, if they are so rare?

They are bright, so you can see them at incredible distances. This kind of tradeoff happens

all the time in extragalactic astronomy. Rare things are less common (duh!), but bright

things (that tend to be rare) can be seen much farther away than dim things. There is

therefore a huge bias towards seeing bright things, unless you’re really careful. Example:

Ask class: if you went to a dark spot on the Earth and looked out, what would you

guess to be the average spectral class of the stars you can see with your naked eye? It’s

about spectral class A, much brighter than the Sun. The overwhelming majority of stars

are intrinsically dimmer than the Sun, but bright ones can be seen much farther away. In

cosmology, the bias towards bright objects is called Malmquist bias.

Now back to our regularly scheduled program. Since objects far out of hydrostatic

equilibrium don’t last long in that state, one more typically finds objects that are slightly

out of hydrostatic equilibrium, and hence evolve over long times. As we said in the last

lecture, this typically means that the long-term evolution of many things reduces to a

competition between gravity and everything else; since gravity is always attractive, other

things must intervene to repel bits of matter and prevent everything from collapsing into

a black hole! Ask class: what are examples of effects that can oppose gravity? Orbital

motion, or centrifugal effects, are one example. Pressure or temperature or velocity shear

are other examples. Magnetic fields also exert an opposing force, since field lines repel each



other.

In order to consider all this in a specific context, let’s think about the basics of star

formation. The average density of the galaxy is around 10−24 g cm−3, but the average

density of a star is ∼ 1 g cm−3, so obviously a rather substantial density increase has

happened! On large scales, gravity dominates, so we have to think about gravitational

collapse. We need to find a condition for when something collapses and when it doesn’t.

We can, as theorists, imagine that we have set up a nonrotating, nonmagnetic,

nonturbulent cloud and ask about when gravity will beat thermal pressure. This leads to a

minimum mass called the Jeans mass. Ask class: for a uniform-density spherical cloud of

mass M and radius R, what is the gravitational energy? Eg = 3
5

GM2

R
. Ask class: what is

the thermal energy if there are N particles at temperature T? Et = 3
2
NkT . The condition

for gravity to win is Eg > Et, so
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This is MJ ≈ 2M¯T 1.5n−0.5, where n is the number density. Therefore, if M > MJ then the

cloud will start to collapse, whereas if M < MJ the cloud will not collapse. Note that this

is the absolute minimum mass for a bound cloud. For ρ = 10−23 g cm−3 and T = 100 K,

typical of the ISM, neutral hydrogen has MJ ≈ 104 M¯.

Suppose first that there is no support against collapse. In that case it would collapse on

a free-fall timescale

tff =

(

3π

32Gρ

)1/2

= 3.4 × 107n−1/2 yr . (3)

Typical densities in sterile (non-star-forming) regions are ∼ 50 − 100 cm−3, implying

tff ≈ 5 × 106 yr. This is ∼ 0.1× the inferred lifetime of clouds, so something must hold up

the collapse.

As the gas cloud collapses, its thermal energy goes up and can in principle halt (or at

least slow) the collapse. We have

MJ ∼ T 3/2ρ−1/2 . (4)

If the equation of state is polytropic, so that P ∝ ργ and T ∝ ργ−1 then

MJ ∼ ρ(3γ−4)/2 . (5)



Ask class: what does this mean for whether collapse will stop or run away? If the Jeans

mass decreases as the cloud collapses, there will be a runaway; if it increases, the collapse

will stop. Therefore, for γ < 4/3 there is a runaway.

Halting collapse by rotation

Here, it’s a comparison of the rotational energy with the gravitational energy:

β =
Erot

|Egrav|
¿ 1 (6)

is the usual initial condition. Now, Erot ∼ (RΩ)2 and Egrav ∼ 1/R, so β ∝ R3Ω2. If

angular momentum is conserved during the collapse, then L=const=R2Ω, so Ω ∼ 1/R2 and

β ∝ 1/R. Since the collapse is over many orders of magnitude (say, 1018 cm for a solar

mass cloud to 1011 cm for a star), this means that rotation can halt the collapse even if it is

unimportant initially.

Let’s work this out. The Galaxy rotates with a period of about 200 million years, so

let’s say that the initial molecular cloud shares at least that rotation. If a 1 M¯ portion

of the gas has a radius of 1018 cm initially, then to collapse to something the size of the

Sun (1011 cm) and conserve its angular momentum it needs to spin 1014 times faster, or in

about 1 minute(!) compared with ∼3 hr for breakup and ∼30 days for the actual rotation

period of the Sun. This is a serious problem! As a sidelight, let’s think for a second about

what other angular momentum exists in the solar system. Ask class: do they know what

fraction of the mass of the solar system is in the Sun? About 99.8%. What fraction of the

angular momentum? The Sun rotates at about 1/300 of the Keplerian orbital frequency

at its radius. Jupiter orbits at Keplerian, of course. In addition, Jupiter is at a radius

of 5 AU=7 × 1013 cm, or 1000 times the radius of the Sun, so it has a specific angular

momentum about 10001/2 times greater than a particle orbiting at the limb of the Sun.

Therefore, the specific angular momentum of Jupiter is about 10001/2 × 300 = 104 times

that of the Sun. The Sun’s mass is 103 times Jupiter’s so Jupiter’s angular momentum is 10

times that of the Sun. In reality, the Sun’s mass is centrally concentrated, and JJ/J¯ ≈ 100.

So, that helps, but not enough.

Magnetic fields can also help halt collapse, but we will not consider them in this lecture

(it’s a bit far afield).

What we have found is that, although it is easy to find gas that will start to collapse

(you just need M > MJ), there are three things that can prevent the gas from collapsing

all the way and forming stars: (1) if the polytropic index exceeds 4/3, the cloud can heat

up fast enough to stop collapse with thermal pressure, (2) rotation and a centrifugal barrier

will generally set in if the cloud conserves its angular momentum, (3) in some cases the

magnetic field may halt collapse. We will now consider ways out of these problems.



Heating and Cooling

First, the thermal problem. A molecular cloud is heated by external radiation (X-rays,

gamma-rays, UV) when it is low-density, and by cosmic rays more generally. At low

densities and high temperatures, cooling is relatively inefficient. It tends to proceed via

molecular radiation, such as from H2 and CO. At low temperatures and high densities,

cooling from dust grains dominates. This radiation occurs in the IR because that’s where it

is able to escape. This is why IR mapping tends to track dust.

The net result is that when a cloud becomes optically thick (say, τ > 1/2), then it is

self-shielded from external radiation and the interior portions of the gas can cool in peace.

This happens by formation of molecules, for example, and the equilibrium temperature

drops to about 10 K. Therefore, the inner part of the gas can radiate away the energy it

gets from gravitational collapse (“settling” might be more appropriate), and continue to

contract.

Angular momentum

As we indicated before, the specific angular momentum (“specific” means “per mass”,

so it’s L/M) of giant molecular clouds is vastly greater than that of stars, so you have to

get rid of most of it. For a ∼1 pc giant molecular cloud, L/M > 1023. For a dense cloud

core, ∼0.1 pc, L/M ∼ 1021. For the Sun, L/M ∼ 1015. Lots of orders of magnitude. Where

does the excess go?

You might think it could go to binaries, or planets, or that young stars might have a lot

of angular momentum, but it isn’t so. A 3-day binary has L/M ∼ 1019. Ask class: how

would the angular momentum go with orbital period? Like P 1/3, so even at a 104 yr binary,

L/M ∼ 1021. We already found that Jupiter doesn’t have enough either, ∼ 1020. Young

stars like T-Tauris have L/M ∼ 1017, so more than the Sun but nothing close to that of the

initial cloud.

Therefore, specific angular momentum must be transported away from the system

entirely. Ask class: what are some ways that this can happen? Winds (magnetic,

especially), jets, disks. Still a lot of discussion about how this happens. In somewhat more

detail, angular momentum can be removed by:

(1) Magnetic braking. If a magnetic field threads a cloud, it will try to enforce uniform

rotation. This moves angular momentum outward. This can happen before the collapse of

the cloud. It is also effective in slowing down the rotation of stars.

(2) Collapse to a disk. Stresses within the disk transport angular momentum outward

and mass inward. An especially important source of such stress is the “magnetorotational

instability”, or MRI. If the disk has enough ionization, even a weak magnetic field is

amplified if fluid at smaller radii has a higher angular momentum than fluid at larger radii.



If the ionization fraction is really low (or more properly if the magnetic Reynolds number

is high enough), this mechanism is ineffective. This may lead to “dead zones” in some

protoplanetary disks.

(3) Star-disk coupling. If the star has a significant magnetic field, it can get slowed

down by interaction with the disk (or spun up, for that matter).

The net result of all of this is that once the gas starts to contract, it is likely that at

least parts of it will eventually form stars (the efficiency of star formation, i.e., what fraction

of the gas becomes stars, is debated). However, we are presented with an interesting issue:

the initial Jeans mass is often about 104 M¯ or even larger. Ask class: why, then, don’t

we have lots of 104 M¯ stars? A key is that as the gas settles and cools, the Jeans mass

decreases. Therefore, smaller subclumps in the matter become unstable, so that instead of

one huge star we end up with lots of normal stars. In the early universe, at redshifts of

z ∼ 10 − 20 where the first stars formed, there are essentially no “metals” (in astronomical

lingo, elements heavier than helium). This means that cooling was much less efficient

then, so objects are hotter and the Jeans mass is larger. This leads current researchers

to believe that the first generation of stars (“Population III” stars) could have been much

more massive than current-day stars, perhaps up to hundreds of solar masses.


