
Hydrogen Atom Structure and Spectra

Our next application of quantum mechanics is to the simplest of all atoms: hydrogen.

The spectra of atoms (and molecules) play an immensely important role in astronomy,

because it is only by looking at such spectra that we can figure out the composition of

objects, their redshift, how fast they move, and so on. Recently, there has even been a

suggestion that at high redshifts the spectra change in a way most easily explained by a

varying “fine structure constant”, which can be calculated from the quantum mechanical

effect it has on electron orbitals. We’ll see whether this evidence holds up, and in this class

we won’t be going into that kind of detail, but spectra are where quantum mechanics meets

astronomy most squarely.

First, let’s think of an atom purely classically. Imagine that we treat a hydrogen atom

as an electron moving in circles around a proton. The electron is therefore accelerated, so

it radiates. The total energy at a given instant is the (negative) potential energy plus the

kinetic energy, and for a circular orbit the total energy is negative (it’s half the potential

energy, by the virial theorem). Therefore, loss of energy means that the electron moves

closer to the proton, so the acceleration is greater and the energy loss is greater. Classically,

this process would run away and within a tiny fraction of a second the atom would collapse.

As a semi-classical try to deal with this, Bohr suggested a quantization rule that the

angular momentum of the electron had to be h̄ times a nonzero integer. If we assume this

but otherwise keep our classical “solar system” picture, then for the ground state we have

V = −e2/r, K = 1

2
mev

2 = e2/2r (from the virial theorem), and L = mevr = h̄. The total

energy is −e2/2r, which for this angular momentum is E = −mee
4/2h̄2 = −13.6 eV. This

happens to be exactly right, and if you put in 2h̄, 3h̄, and so on you get the right energy

spacing (E(nh̄) ∝ 1/n2).

But why should the angular momentum be quantized? Let’s take a different approach:

from the uncertainty principle we know that if an electron is confined to a small volume

then it has a large momentum. In particular, let’s say that p = h̄/∆x, or if the electron

is within a distance r of the proton then p = h̄/r. Then, independent of quantization

effects, we’d like to know the ground state of the atom, which is where the total energy is

minimized. The total energy is p2/2me − e2/r, which is h̄2/(2mer
2) − e2/r. This reaches a

minimum at r = h̄2/(mee
2), so that again we get the exact answer E = −mee

4/2h̄2.

This is too good to be true. In fact, we’re just lucky to get the right factors in these

cases, although getting the dependences right is not an accident. It is, however, helpful to

have this general picture before moving on to the equations.

Let’s bite the bullet and do it for real! We are looking for stationary states of the

atom, i.e., we want to use the time-independent Schrödinger equation. The potential energy



V (r) = −e2/r, so it is spherically symmetric and therefore it is best to use the Schrödinger

equation in spherical coordinates. For now, let us remain somewhat general by treating a

spherically symmetric potential, in which V (r) = V (r). We’ll substitute in the Coulomb

potential V (r) = −e2/r later.
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If we write out the ∇2 operator in spherical coordinates we get the intimidating expression
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Ulp. The resulting partial differential equation looks nasty. In general, a differential

equation need not have an analytic solution, and partial differential equations can be

especially tricky. It is often useful to make a guess at the form of the solution to see if it

can be simplified. One guess here is that because the potential is independent of θ and φ,

maybe the eigenfunctions can be written as a product of a radial factor and an angular

factor. This is called separation of variables, and we’ve already done that with the time

component by separating out the factor exp(−iEt/h̄).

ψ(r, θ, φ) = R(r)Y (θ, φ) . (3)

Let us write the Schrödinger equation in somewhat more compact form by defining
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Then the separation of variables produces
[
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]

Y (θ, φ) −
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2mr2
[L2Y (θ, φ)]R(r) + V (r)R(r)Y (θ, φ) = E R(r)Y (θ, φ) . (6)

Note that R only affects R(r), whereas L2 only affects Y (θ, φ). If we multiply each term by
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we get
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The left hand side is only a function of r, whereas the right hand side is only a function

of θ and φ. The only way they can be equal is if both are equal to a constant, call it Λ.



Remember, by the way, that R and L2 are operators, so they aren’t just multiplied by R(r)

and Y (θ, φ). We therefore have two equations:

RR(r) + (2m/h̄2)[E − V (r)]R(r) = (Λ/r2)R(r) ,

L2Y (θ, φ) = −ΛY (θ, φ) .
(9)

Whew! Let’s sit back and take stock of what this means. First, we have shown that if

the potential is spherically symmetric, then the wavefunction can be broken into a radial

part and an angular part. This is intuitively reasonable. Note also that the energy only

appears in the radial eigenfunction equation. This suggests the possibility that it is only

the radial function that enters into the energy. Finally, note that h̄ never enters explicitly

into the angular part of this equation. This suggests that the functions Y (θ, φ) are not just

quantum mechanical. Indeed, they are called spherical harmonics, and enter any time one

has spherical symmetry and modes. For example, when one thinks about oscillation modes

of a star (such as the Sun), spherical harmonics are used to describe them even though

quantum mechanics has nothing to do with the oscillations.

Let’s get a flavor for the wavefunctions by setting Λ = 0 and looking for solutions to

the Coulomb problem V (r) = −e2/r. We notice that Y =constant is a solution of the

angle equation, so let’s assume that and focus on the radial equation. The radial equation

becomes
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It is still far from obvious how one should solve this equation in a systematic way. In such

situations, it is useful to make an educated guess. Note that both the terms in parentheses

have one term that has a 1/r in it, and one without. If we choose a function whose form

doesn’t change when the derivatives are taken, we might be able to match up the terms.

Therefore, let’s try R(r) ∝ exp(λ1r), realizing that the constant in front will cancel out so

that we may as well set it to 1.

(λ2

1
+ 2λ1/r) exp(λ1r) − (2m/h̄2)(−e2/r − E) exp(λ1r) = 0

λ2

1
+ 2mE/h̄2 + 2λ1/r + 2me2/(h̄2r) = 0 .

(11)

In order for this equation to be true at all radii, the constant term must be zero and the

term proportional to 1/r must be zero, independently. This implies

λ1 = −me2/h̄2

E = −h̄2λ2

1
/2m = −me4/(2h̄2) .

(12)

This is the energy of the ground state. For m = me = 9.11 × 10−28 g, we get 13.6 eV, the

ground state binding energy of hydrogen.

What does this mean? Ask class: What is the typical radius beyond which the

probability density drops off significantly? In an exponential of the form exp(−r/r0), one



can say to order of magnitude that r ∼ r0 is where the probability drops off, so in this

case r0 = h̄2/(mee
2) = 5.2 × 10−9 cm, the Bohr radius. We also need to ask whether

the wavefunction we have derived satisfies the constraint that the squared modulus can

represent a probability. It can indeed, because exp(−2me2r/h̄2) integrates to a finite value

over all space, so it can be normalized and can therefore represent a probability.

Now let’s see what we can find about other states. When we picked our trial

wavefunction for the ground state, we were able to find a solution because we had two free

parameters (λ1 and E) and needed to solve two equations (both the r−1 and r0 terms had

to vanish). Ask class: if we keep an exponential factor in front, how can we generalize

the form of the wavefunction so that we still have as many unknowns as equations? Note

that if instead of a constant in front of the exponential, we have a polynomial of degree n

(i.e., the highest power of r is rn), then we have n + 2 equations (the r−1, r0, r1, . . ., rn

terms must all vanish). It may appear at first that we have n+ 3 unknowns: n+ 1 from the

coefficients of the polynomial, plus E and the factor in the exponential, but remember that

the overall normalization of the wavefunction does not enter into the eigenfunction equation

(the normalization is determined by the condition that the probability must integrate to 1

over all space). Therefore, there are only n+2 free parameters, so we can solve the equation

with a polynomial in front of the exponential. Let’s try the next case, where we assume

ψ = (a+ r) exp(λ2r), where λ2 is not necessarily the same as λ1.

[(a+ r)λ2

2
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2
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2
+ 4λ2 + 2me2/h̄2 + 2mEa/h̄2) + (1/r)(2aλ2 + 2 + 2mae2/h̄2) = 0 .

(13)

This is a little more complicated, but on solving you get

λ2 = −me2/2h̄2

E = −me4/(8h̄2)

a = −2h̄2/me2 .

(14)

Ask class: what does this mean, in comparison with the ground state wavefunction? The

energy is 1/4 of the ground state energy. We also notice that the wavefunction goes to zero

at r = 2h̄2/me2. If we were to continue to higher and higher order polynomials, we would

notice that for n being the highest power of r, the energy is proportional to 1/(n+ 1)2.

The wavefunctions we have considered thus far have Λ = 0. This corresponds to

zero angular momentum. If we were to look at the angular eigenfunction equation

L2Y (θ, φ) = −ΛY (θ, φ) in detail, we would find that solutions exist only if Λ = `(` + 1),

where ` is a nonnegative integer. Let’s try ` = 1 and see what solutions we can find.

In the same spirit as before, we can try a wavefunction of the form ψ ∝ exp(λr), where

λ is undetermined. However, we notice that now the right side of the radial eigenfunction

equation has 2/r2 when the common factor of exp(λr) is cancelled out, and no 1/r2 term



exists on the left, so this equation cannot be solved.

We then move up one rank of polynomials, and consider ψ ∝ (a + r) exp(λr). Once

again, the term proportional to a gives a term like a/r2 on the right hand side, but no

corresponding 1/r2 term on the left. This is only consistent if a = 0, so we can try instead

ψ = r exp(λr). The radial eigenfunction equation becomes

(λ2r + 2λ+ 2λ+ 2/r) exp(λr) + (2mEr/h̄2 + 2me2/h̄2) exp(λr) = (2/r) exp(λr)

r(λ2 + 2mE/h̄2) + (4λ+ 2me2/h̄2) + 2/r = 2/r .
(15)

The 2/r terms cancel out, and we are left with

λ = −me2/(2h̄2)

E = −me4/(8h̄2) .
(16)

Therefore, although the ground state cannot have any angular momentum, the first excited

state can, and the energy is the same as the energy of the first excited state without any

angular momentum. There’s one thing we should note about the wavefunctions with and

without angular momentum. Ask class: for zero angular momentum, is the probability

density at r = 0 zero or nonzero? It is nonzero in both cases we’ve looked at. Ask class:

how about for nonzero angular momentum? The wavefunction has a factor of r, so the

probability density at the origin is zero. This corresponds to classical intuition of orbits:

zero angular momentum can pass straight through the center, but nonzero will always run

into a “centrifugal barrier” and fail to reach the origin, for a 1/r2 force law or 1/r potential.

Incidentally, the mass m here should really be the reduced mass µ = mM/(m+M), where

M is the mass of the nucleus, but since the proton mass is nearly 2000 times the electron

mass, it’s a small correction.

It should be emphasized that the techniques we’ve described here are rather brute force

techniques. In principle, inspired guessing can solve eigenfunction equations (if they can be

solved at all), but if you pursue quantum mechanics further you’ll see that specific problems

(such as this one or the harmonic oscillator) can be approached with special techniques that

are more elegant.


