Class 12 : X-ray binaries and the discovery of black holes

ASTR350 Black Holes (Spring 2022) Cole Miller

RECAP

- Development of radio astronomy (1960s) led to the discovery of pulsars
 - Very regular and rapid pulses of emission
 - Soon identified as the rotation of a magnetized neutron star

Neutron stars

- Exotic objects!
- Average density comparable to that of atomic nucleus
- Much of the interior has been "neutronized" (most but not all protons converted to neutrons)
- some have very strong magnetic fields
- importance of GR

This class

- Neutron Stars continued
- Discovery of black holes!
- Story of X-ray astronomy...

Muddiest points

4

General astro questions

I: Atmospheric Windows

- The atmosphere blocks many wavelengths of electromagnetic radiation. Essentially, we can just see from the ground
 - Optical/near IR
 - Microwave (from high dry places!)
 - Radio
- So how do we do X-ray astronomy?
 - why should we care?

Why X-rays ??

- Neutron stars born VERY hot in SN Cool off with time After about 1000 years T~10⁶ K emit at x-ray wavelengths
- Most accreting neutron stars emit most of their energy at x-ray wavelengths
- Most accreting stellar mass black holes emit most of their energy at xray wavelengths
- Supermassive BHs emit a substantial amount of their energy in the x-rays

Spectrum of an accreting neutron star from optical through x-ray

© 2007 Thomson Higher Education

Atacama desert- driest place on Earth

South Pole- coldest place on Earth; also very dry!

II : Early History of X-ray astronomy

- Sounding rocket flights...
 - 1949 : Launch of X-ray detector on a V2-rocket; first detection of X-rays from Sun
 - 1962 : First detection of an X-ray source from outside of the solar system (Sco-X1, Giacconi et al Nobel prize 2002)
 - 1964 : Detection of Cygnus X-1- first black hole
- Satellites
 - 1970 : Uhuru satellite launched- first survey
 - Since 1970's multiple satellites- focusing on surveys, imaging, timing, spectroscopy

Nature of Faint X-ray Sources

- Most of the faint x-ray sources are super massive black holes active galaxies (AGN, quasars, Seyfert galaxies)
- At a median redshift of 0.7 (D_L =4260 Mpc = 1.31x10²⁸ cm)
- median x-ray luminosity (10^{43.5}ergs/sec =8x10⁹ L_☉)
 - The red 'blobs' are clusters of galaxies

II: Neutron star X-ray binaries

- Many X-ray binaries* consist of a neutron star (rather than a black hole) orbiting a normal star
- Important new aspect...
 - Neutron stars have a magnetic field and a surface!
 - Appearance of source can depend on magnetic field

*x-ray binary: a binary stellar system consisting of a main sequence star or white dwarf and a compact object (NS or BH) which is accreting material and produces copious x-ray emission

Accreting Neutron Stars

- Two types- based on mass of companions (high mass (O/B stars); low mass (mainly K, M) stars)
 - Low mass x-ray binaries-NS star tends to have low magnetic field-
 - High mass-NS tends to have high magnetic field
 - Reason for difference is not clear; "burial" of magnetic field by accreting matter is a possibility but isn't easy in detail

- Strongly magnetized neutron star X-ray binaries...
 - Matter flows from a companion star and forms an accretion disk
 - Magnetic field disrupts accretion disk
 - Matter flows down field lines and strikes neutron star surface at magnetic poles... get "hot spots"
 - In hotspots, temperatures get high enough to fuse the incoming hydrogen to helium (continuously)
 - As poles spin around (due to NS rotation), the hot-spots flash in and out of view... get an <u>accretion-powered X-ray pulsar</u>.
 - Luminosities range from 10³²-4x10³⁸ ergs/sec, ~ 100 in Milky Way more luminous that 10³⁶ erg/sec; for reference, Sun is ~4x10³³ erg/sec total
 - Unlike case of the radio pulsars these are spinning-up due to the action of the accretion disk

From http://astronomy.swin.edu.au/cosmos/X/X-ray+Pulsar

X-ray Bursters

- Weakly magnetized neutron star X-ray binaries
 - Accretion disk extends all of the way to the neutron star surface... hydrogen gas is dumped onto surface and spreads around.
 - So... there's a growing layer of hot hydrogen gas on surface
 - Once layer grows thick enough, runaway fusion starts at base of layer... layer explodes!
 - Explosion lasts about 10s and blows most of the layer into space...
 "X-ray burst"

III X-ray astronomy

- X-ray surveys (Uhuru satellite) found ~300 new sources in the early 1970's
 - One of them was very strange
- Properties of Cygnus X-1
 - Associated with a massive star 6000 ly away
 - Powerful X-ray source... 10⁵x power of Sun!
 - Rapidly variable X-ray source

III : Figuring out Cygnus X-1

- Once companion star identified, intense study began
- Companion is a blue supergiant with mass of 40M_{sun}
- Star found to wobble...
 - Period 5.6 days
 - Velocity ±75km/s
 - Clearly a binary star... something is orbiting the star, causing it to swing around
 - Analysis of orbit says that the companion must be 7-20M_{sun}
- Nature of companion
 - Must be very small (X-ray variability)
 - Too massive for neutron star
 - <u>… hence a black hole!</u>

Velocity of companion star vs phase of 5.6d period

Brocksopp et al. (1999)

III : Figuring out Cygnus X-1

Observable velocities K₁ = V₁sini and K₂= V₂sini

and the minimum mass M is Msin³i=P(K₁+K₂)³/2Gπ

If we only have velocity information for the star (and not the compact object) the minimum mass is $P_{orb}K_2^3/2\pi G$

III : Figuring out Cygnus X-1

- Very rapid (millisecond), high intensity variability
- Generic argument that size of source R~c∆te.g 1 ms=3x10⁵m- much smaller than sun

Rothschild et al. (1974)

- So... why the X-rays?
 - Gas from star flows towards black hole
 - Forms an accretion disk around black hole
 - Inflowing/spirally gas gives up gravitational potential energy and heats up to 10⁷⁻⁸K
 - Hence X-rays!
 - Physics of accretion disks can be probed via x-ray spectroscopy and timing- also signatures of strong gravity (for stellar mass black holes x-ray observations are the only way to measure this set of properties)

Accretion from a Companion Star

Why Accretion Into a Black Hole is Different

- Neutron stars have a magnetic field and a surface- they can be pulsars and bursters
- Black holes have an event horizon and not a surface and do not have a strong magnetic field associated with them – cannot be pulsars or bursters (no surface to accumulate material to explode)
 - spinning black holes have an ergosphere which NS do not have
 - Black holes have a ISCO (innermost stable circular orbit) and NS do not
- Both can have companion stars with a wide range of mass from which accretion can occur
- HOWEVER: it is difficult in detail to find behavior which happens in all accreting black holes and no accreting neutron stars.

Downward to Black Holes!-

- A neutron star has a maximum mass M<3 M_{sun}
 - If this mass is exceeded one has a complete gravitational collapse to a black hole

How Can We Observe Black Holes

- If a black hole is a 'place' where radiation cannot escape to infinity then how can they be observed ?
 - Dynamical effects on 'nearby' material
 - "Shining" black holes- a black hole can be a place where accretion occurs and the process of accretion around a compact object can produce huge amounts of energy and radiation- making the black hole 'visible

Observations to Determine Nature of Object

If it bursts or pulses it's most likely a neutron star (presence of a magnetic field or a surface)

If its mass is >3M $_{\odot}$ it's most likely a black hole maximum mass of a NS is ~3 M $_{\odot}$

Stellar Mass Black Holes

- What do you mean 'black holes' ?
- We know of objects whose mass (derived from observations of the lines from the companion objects and Newton's (Einstein) laws) which are larger than possible for a NS or white dwarf.
- They have other unusual properties (related to their xray spectrum and timing behavior)
- Big differences- no surface, no (?) magnetic field, higher mass, stronger GR effects.

Table 4.3. Candidate black hole binaries^a

Source	RA(2000)	DEC(2000)	$r_{\rm x}^{\ b}$	BH $trait^c$	Grade^d	Referen
1354–645 (BW Cir)	13 58 09.74	-64 44 05.2		LH,HS	Α	1,2,
1524–617 (KY TrA)	$15\ 28\ 16.7$	-61 52 58		LH,HS	A	5,
4U 1630-47	$16 \ 34 \ 01.61$	$-47 \ 23 \ 34.8$		LH,HS	A	8,9,10,11
XTE J1650–500	16 50 01.0	-49 57 45		LH,HS,VH	\mathbf{A}	12, 13, 14, 15
SAX J1711.6–3808	$17 \ 11 \ 37.1$	-38 07 06		LH,HS	в	17
GRS 1716–249 e	$17 \ 19 \ 36.93$	$-25 \ 01 \ 03.4$		LH	В	19,20
XTE J1720–318	17 19 59.06	-31 44 59.7		LH:,HS	C	22,23
KS 1730–312	$17 \ 33 \ 37.6$	-31 13 12	30''	LH,HS	\mathbf{C}	25
GRS 1737–31	$17 \ 40 \ 09$	$-31 \ 02.4$	30''	$\mathbf{L}\mathbf{H}$	в	27,28
GRS 1739–278	$17 \ 42 \ 40.03$	$-27 \ 44 \ 52.7$		LH,HS,VH	A	30,31,32,33
$1 \to 1740.7 - 2942$	$17 \ 43 \ 54.88$	$-29 \ 44 \ 42.5$		LH,HS,J	Α	35,36,37,38
H 1743–322	$17 \ 46 \ 15.61$	-32 14 00.6		HS,VH	Α	40,41,42,80,81
A 1742–289	17 45 37.3	-29 01 05		HS:	C	43,44,45
SLX 1746–331	$17 \ 49 \ 50.6$	-33 11 55	35''	HS:	С	47,48
XTE J1748–288	$17 \ 48 \ 05.06$	$-28 \ 28 \ 25.8$		LH,HS,VH,J	A	50,51,52,53
XTE J1755–324	17 55 28.6	-32 28 39	1'	LH,HS	В	55,56,57
1755–338 (V4134 Sgr)	17 58 40.0	-33 48 27		HS	В	59,42,60,61
GRS 1758–258	$18 \ 01 \ 12.67$	-25 44 26.7		LH,HS,J	Α	$63,\!38,\!64,\!65$
EXO 1846-031	18 49 16.9	-03 03 53	11″ ^f	HS	\mathbf{C}	
XTE J1908+094	$19\ 08\ 53.08$	$+09 \ 23 \ 04.9$		LH,HS	в	68,69,70
1957+115 (V1408 Aql	$)19\ 59\ 24.0$	$+11 \ 42 \ 30$		HS	\mathbf{C}	72,42,73,74
XTE J2012+381	20 12 37.70	+38 11 01.2		LH,HS	В	76,77,78

~20 black holes with a dynamical measurement of the mass

Black Holes in the Milky Way

- Over the last 40 years ~25 BHs have been discovered as the counterparts to x-ray sources
- New ones are discovered at the rate of 1-2 per year as the counterparts to 'x-ray transients'
- Based on supernova rates expect ~10⁷-10⁸ in the MW So can only see these in rare circumstances!

Observational Evidence for Black Holes