
Equations of Stellar Structure

We’re getting closer to being able to construct simple models of stars. To do this we need

to write two more equations relating various quantities; an energy transfer equation, which

relates the gradient of the energy density to the luminosity, and an equation of state to relate

the pressure to the density and temperature. Once we have that, we have a complete set of

equations (in principle) and will apply them in a simple model. In the next several classes

we will then focus on particular aspects of these relations: energy generation, equations of

state, and opacities.

For energy transfer, we’d like to think about the net flux of energy a given location.

Since we’re restricting things to spherical symmetry, the only direction in which such flux

can be nonzero is the radial direction. In the interior of stars (which is what we care about),

the mean free path is small enough that we can think about diffusion (i.e., particles scatter

or interact an enormous number of times before they leave the star). Thus, the flux depends

in some way on the energy density. Ask class: if the energy density is constant throughout

the star, will there be net flux? No, because as much goes down as up. So, Ask class:

how must the flux be related to the energy density? Through the gradient of the energy

density, which is dE/dr since spherical symmetry applies. Now, let’s say that the energy is

transported by some particle with a mean free path `. Ask class: for all else equal, will the

net flux be larger if ` is larger or smaller? Larger, because a larger change in energy density

is sampled. Conversely, if the opacity κ is large (meaning that the mean free path is small),

the net flux must be small. Therefore, F ∼ κ−1dE/dr. Ask class: if r and F are both

positive in the outward direction, is the sign positive or negative in the equation for F? It

must be negative, because for outward flow of energy we need E to be larger at smaller r,

and thus we need dE/dr to be negative.

Let us consider first transport of energy by radiation. Other possibilities exist; for

example, in parts of the Sun and other stars convection is the primary way that energy

is transported, and in degenerate stars it is conduction. But it’s instructive to start with

radiation transport, and this is the dominant mode for substantial fractions of the volumes

of many stars.

The energy density of radiation is aT 4, and when various other factors are put in (see

our textbook) the flux is Fr = −(c/3κρ)d(aT 4)/dr, so that the luminosity is

Lr = −4πr2c

3κρ

d(aT 4)

dr
. (1)

This may also be written in the Lagrangian form (i.e., with dMr and the fundamental

differential instead of dr) using the relation dMr = 4πr2ρdr.



The opacity has dimensions of cm2 g−1, and is therefore the total cross section of a given

mass of material. We’ll talk about the opacity in much greater detail later, but for now note

that 1/(κρ) has dimensions of centimeters, and is in fact the mean free path. The factor of c

in equation 1 is in the numerator because radiation travels at the speed of light; clearly, the

faster your energy-carrying particles move, the more flux is transported, for all else equal.

The full calculation of opacities can be awful. Luckily, for many applications one can

write it as

κ = κ0ρ
nT−s , (2)

where κ0, n, and s are constants. For example, for Thomson scattering (recall that this

is scattering off of a free electron of a photon with an energy much less than the electron

rest-mass energy mec
2), n = s = 0, whereas for a Kramer’s law of opacity n = 1 and s = 3.5,

which is useful for various atomic opacities. The final equation we’d like is the equation of

state, which relates pressure to density and temperature. In the same spirit as the opacity,

we can write

P = P0ρ
χρT χT , (3)

with P0, χρ, and χT constant. For example, for an ideal gas P = nkT so χρ = χT = 1.

Similarly, the energy generation rate ε (such that dL/dM = ε) is often written as ε = ε0ρ
λT ν .

Note that all these power-law forms are approximations (which are usually only applicable

over some range in density, temperature, etc., but they can be surprisingly good for many

applications), and that they also really depend on things such as the composition.

We can put these together in our four fundamental equations of stellar structure:

Eulerian Lagrangian

Mass equation M(r < r0) =
∫ r0
0
ρ4πr2 dr M(r < r0) =

∫ r0
0
ρ4πr2 dr

Hydrostatic equation dP/dr = −ρGM/r2 dP/dM = −GM/4πr4

Energy balance dL/dr = 4πr2ρε dL/dM = ε

Energy transfer L = −4πr2c
3κρ

d(aT 4)
dr

L = − (4πr2)2c
3κ

d(aT 4)
dM

(4)

Dimensional Analysis and Homology Relations

After considerable thought, I have decided that I do not want to go into this subject

at the depth that our textbook covers. The reason is that (see below) the assumptions in

this analysis are not correct in detail and indeed are importantly incorrect in some ways,

so I don’t want to focus on it too much. On the other hand, dimensional analysis is an



important way to get physical insight, so I also don’t want to skip the subject entirely. As

a compromise, I’ll give you the basic principles and then stop.

The idea of homology relations is to suppose that there is a single “standard star” and

that all other stars are scaled versions of this. Among other things this means that we

assume spherical models with the same uniform composition and microphysics. Note: this

means that there is no preferred scale, and thus that in using these relations we are assuming

that all stars are intrinsically alike. This implies that various functions are power laws, since

these have no scale either (true only of pure power laws, in the sense that, e.g., if f(ax)/f(x)

is independent of x for any constant a, f must be a pure power law). A familiar example

is the Newtonian orbit of two bodies: the two bodies each orbit the center of mass of the

system, each with the same eccentricity, and the ratio of the semimajor axes is the inverse of

the ratio of the masses. You couldn’t tell by looking at only the shape of the orbits (rather

than their size, or the orbital period) what the masses are or what the separation is. If you

go to general relativity, however, then there are some scales that do enter, although for black

holes, again, changing the mass does not fundamentally alter the nature of the spacetime

exterior to the black hole.

The lesson is that for scale-free quantities, power laws rule! Whenever there is a preferred

scale, the power laws are broken. We’ll keep this in mind because for homology relations

we will assume power laws, but they are valid only as long as the scale free property works

(e.g., the microphysics is the same for all the stars in our sample).

Thus, we will assume that r and Mr in a star of radius R and mass M are related to

each other, with respect to a reference star of radius R0 and mass M0: if

r =
R

R0

r0 (5)

then

Mr =
M

M0

Mr0,0 . (6)

That is, the mass interior to r in the general star is equal to M/M0 times the mass interior

to r0 in the reference star.

In a homology treatment, we then assume that various quantities are related to the total

mass via power laws. For example, we assume that R ∝MαR and ρ ∝Mαρ . From that and

the mass equation ρR3 ∝ M , we get (by taking the derivative of the log of that relation)

αρ + 3αR = 1. We also assume that, say, the pressure (and opacity, and energy generation

rate, and ...) can also be written with power laws. For example, we assume an equation of

state P = P0ρ
χpT χT . From that (see book for details), you can get various relations between

the exponents (i.e., the αs and the χs) using particular assumptions.

This is a lot of assumptions; how well does it do in practice? As one example, we



can consider moderately massive main sequence stars, for which the opacity is dominated

by electron scattering, the equation of state is close to that of an ideal gas, and hydrogen

fuses to helium mainly through the CNO cycle (more on this later in the course). Then

when you go through everything you get (R/R�) = (M/M�)0.78 and (L/L�) = (M/M�)3.

Empirically, and also using full numerical models, the exponents are more like 0.78 and 3.5,

so our homology relation didn’t do too badly. Using the empirical relation and assuming that

during the main sequence stars convert a nearly fixed fraction (about 15%) of their hydrogen

to helium, we can then estimate the main sequence lifetime. The total mass available to fuse

is M , so the total energy available is also proportional to M and the time is thus proportional

to M/L, so T = T�[(M/M�)/(L/L�)], or T ≈ 1010(M/M�)−2.5 yr.

How can we assess the utility of homology relations and dimensional analysis in this

context? This approach was essential decades ago, when computers were terrible. Even

now, we can get insights in a simplified treatment such as this that we do not get when we

just throw everything at someone else’s sophisticated code and assume that the results are

correct. I think the right approach is to understand the principle of dimensional analysis,

and also to think carefully about the assumptions that go into any particular analysis so

that we can have a reasonable sense for when those assumptions fail.

With that in mind, even though we haven’t encountered details yet, Ask class: let’s

brainstorm about ways that our assumptions above might fail for sufficiently low-mass or

high-mass stars. Even if we don’t know, it’s good to think about this in advance so that we

are better prepared when we go into the relevant details.

Observables of Stars, Conventions

For a given star, we can directly observe only the flux (and in some cases the polarization)

as a function of photon wavelength. For close enough stars, and using (recently) the amazing

power of the Gaia mission, parallax gives us a way to estimate their distance. This means

that we can use the observed flux plus the distance to estimate the intrinsic luminosity

as a function of wavelength, although we do have to worry about wavelength-dependent

absorption of light by the interstellar medium, and to a much lesser degree about the fact

that when a star rotates it does not emit perfectly isotropically, so our line of sight might

not be perfectly representative.

We’d like to quantify the flux at each wavelength. If we did this now we would do so by

asking about the energy per area per time per interval of wavelength, at that wavelength.

We could instead do this by frequency rather than wavelength given that they are inter-

changeable. Indeed, this is more or less how people quantify flux in radio waves, X-rays, and

gamma-rays.



But because optical astronomy started far earlier than at any other wavelength (since

we can just use our eyes!), we are stuck in the optical and in much of the infrared and

ultraviolet bands with a system originated by the Greek astronomer Hipparchus more than

two millennia ago. Thus in these bands we are saddled with the curse of magnitudes. This,

as you probably know, is a logarithmic system: 5 magnitudes equals a factor of 100 in flux

in a given band. If a star is dimmer, its magnitude is greater. The historical antecedent is

probably that people would talk about “a star of the first magnitude” being brighter than

one of the second magnitude, and probably the proportions between magnitudes are about

the level distinguishable by eye. At a dark site, with good vision, magnitude 6 is the typical

naked eye limit. The brightest star in the night sky is Sirius, at magnitude -1.5.

All of that is the apparent magnitude, which is basically how bright the star appears

to be. But we can also define the absolute magnitude, which is the magnitude that star

would appear to have if it were 10 pc from us (remember that a parsec is about 3.26 light

years and is the distance such that the parallax from 1 au of motion is one arcsecond; thus

parralax arcsecond). The Sun has an absolute V magnitude of 4.8 (why “V”? See below for

the horrifying truth). This is one way of determining the distance of an object, because the

distance follows if we know the true and the apparent brightness. However, absorption by

intervening dust and gas can make such calculations more difficult.

As some of you might know, it’s actually worse than that. Our first thought regarding

the flux of stars would probably be that we want to sum up all of the light from a star,

and then use the magnitude system from that point. But since we want to know the flux

as a function of wavelength, we need some system to do that. A logical approach is to do

so wavelength range by wavelength range; ideally we’d choose really tiny wavelength ranges

to maximize our information, but for faint things that gives us too little flux. Therefore,

instead, we need to define different, and at least somewhat broad, bands in the spectrum

that we integrate to get the flux in that band. This is called photometry, in distinction to

spectroscopy (which involves breaking the spectrum into very narrow intervals by using, e.g.,

a diffraction grating or something similar).

But the reason that I’m moaning about photometry is that there isn’t a single unique

system! In practice (at least in the olden days) the way that you get photometric information

is by applying filters to the light that comes in a telescope. Those filters let in only some

range of wavelengths, and are typically designed to avoid, e.g., strong spectral lines from

the Earth’s atmosphere. But historically, and even now to some degree, the exact nature of

those filters depends on different choices. For example, you could choose the Johnson system

or the SDSS system. Luckily, there are websites where you can convert between the different

magnitudes, but you have to be careful.

The next bit of terminology to recall is spectral types. You may remember that the



spectral sequence is OBAFGKM (and sometimes people add RNS to the end). Don’t worry so

much about details, but the general idea is that the “earlier” (towards O) the type is the more

massive and hotter it is, and the “later” (towards M) the less massive and cooler it is. This

earlier/later nomenclature is a relic of the idea that this actually represented an evolutionary

sequence, but in fact these are entirely separate stars. There are also subdivisions within

this: for a given spectral class (say, G, the spectral class of the Sun), there are attached

numbers with a full range of 0 through 9; more massive/hotter/luminous stars have lower

numbers. The Sun is a G2. Finally, for a given spectral type (which depends on the spectrum

rather than on anything else), there are luminosity classes: I is most luminous, VI is least

luminous. The Sun, at luminosity class V, is technically a “dwarf”. No, it doesn’t make

sense to me either, but if you work in this field you have to learn what things are called.

Something that does make a bit of physical sense is the Hertzsprung-Russell, or H-R,

diagram. The observers’s version of the H-R diagram has absolute magnitude on the vertical

axis and “color” which is the difference between magnitudes in different bands (which, since

magnitudes are logarithmic, is the log of the ratio of fluxes in different bands) on the hor-

izontal axis. The theorist’s version has luminosity on the vertical axis and temperature on

the horizontal axis (oddly, increasing toward the left). The difference is that the observer’s

version relates to directly observable quantities, whereas the theorist’s version plots more

physically meaningful quantities.

As you know, the H-R diagram has proven to be extraordinarily useful in categorizing

stars. You can see a well-populated band from upper left to lower right: the main sequence.

Up and to the right from the main sequence (i.e., cooler but more luminous) you have the red

giants. Down and to the left (i.e., hotter but less luminous), you have the white dwarfs. All

in all, with enough stars you can see the evolutionary sequences of stars, determine which are

common vs. rare, and determine the lifetimes of stars of different masses given observations

of star clusters of different ages. You can even distinguish the presence of binaries, which (if

both stars are the same) have the same color but are twice as luminous as a single star. It’s

an impressive tool. Of course you have to be a little careful, e.g., dust absorption reduces

the flux and makes the color redder, but this was a great success in categorizing stars.


