
Stellar energy sources: gravitation

In the first class we had fun thinking about various energy sources that might power the

Sun. What eliminates all possibilities other than nuclear fusion is the combination of (1) the

energy per mass emitted in the Sun’s lifetime, and (2) the stability of the energy source (the

Sun has been going strong for more than 4 billion years).

In more detail, if we multiply the Sun’s luminosity (about 3.8 × 1033 erg s−1) by its

lifetime (about 4.6 billion years), we get a total of 5.5 × 1050 erg. Since the Sun’s mass is

about M� = 2 × 1033 g, this means that the energy release over the Sun’s lifetime up until

now is 2.8 × 1017 erg g−1. If the Sun were to convert all of its mass into energy, then the

energy per mass would be c2, or about 9 × 1020 erg g−1. Chemical processes (burning of

paper or gasoline, or energy used by hamsters on a wheel!) generate roughly one eV (typical

energy of electrons in an atom) per proton mass, or ∼ 1.6 × 10−12 erg per ∼ 1.7 × 10−24 g,

i.e., about 1012 erg g−1, which is orders of magnitude short of what is needed. For gravity,

and remembering that the gravitational energy of mass m at a distance R from mass M

is GMm/R, the energy per mass is GM�/R� where R� ≈ 7 × 1010 cm, and is thus about

1.9 × 1015 erg g−1, which is also too little (note: since the Sun is centrally concentrated the

actual energy release is greater, but it still falls short by a lot). Nuclear fission has enough

energy per mass (maybe 1018 erg g−1), but above a critical mass fission happens explosively,

so it can’t sustain itself for billions of years.

So nuclear fusion is it for the Sun, and in the following two lectures we’ll go into fusion

in detail. But here we will focus on gravity as an energy source. The reason we’ll do that

is because it is conceptually simpler than fusion, and because gravity actually is the main

source of energy for a number of interesting astronomical objects such as protostars, giant

planets, and accreting compact objects.

To begin, let’s be a little more careful about how we estimate the energy released in

assembling a spherical ball of gas (which to first order is a star or a gas giant planet or a

protostar!). We will think about this in terms of binding energy. Basically, to figure out how

much gravitational energy is released in the assembly of our spherical ball, we calculate how

much energy it would take to strip it away layer by layer and take each layer to infinity. Say

that the outer layer has a mass dM , and is at radius R outside of the rest of the star, which

has mass M . Then the gravitational binding energy is GMdM/R; note that this is positive,

because it’s the energy we would need to put into the layer dM to get it to infinity. Because

by assumption the star is spherically symmetric, the density is just a function of r, ρ = ρ(r),

and thus dM = ρ(r)4πr2dr at radius r. Having removed that layer, we can now remove the



next one down, and so on. Overall, the total gravitational binding energy is then

Egrav =

∫ R

0

GM(< r)

r
ρ(r)4πr2dr , (1)

whereM(< r) is the mass interior to r. For example, suppose that ρ(r) is constant, ρ(r) = ρ0.

Then M(< r) = ρ0(4/3)πr3 and thus

Egrav =
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= (9/15)G[ρ0(4/3)πR3]2/R

= (3/5)GM2/R .

(2)

Dimensionally, the energy has to be proportional to GM2/R; the only question is the pref-

actor. For a constant-density star it is 3/5. Stars are centrally concentrated, because the

central layers are squeezed together by the weight of the layers above. Therefore, the pref-

actor is actually larger than 0.6, and by how much depends on the structure of the star. For

example, the references I have found suggest that the effective prefactor for the Sun is very

close to 1, but for a red giant (large tenuous envelope and a very centrally concentrated core)

the prefactor would be considerably larger. But for the most part you’re basically okay with

Egrav ≈ GM2/R.

So now let’s see what this means for the Sun. GM2
�/R� = 3.8×1048 erg. The luminosity

of the Sun is 3.8 × 1033 erg s−1. Thus the gravitational energy release is enough to power

the Sun for 1015 seconds, or about 3 × 107 years.

In the late 1800s, before nuclear processes were understood, the most efficient way known

to produce energy was gravitational. The ∼ 3 × 107 year timescale is now known as the

Kelvin-Helmholtz timescale, and because it was the longest that the Sun could last, it posed

a problem in the late 1800s because by then it was clear that geological processes required

much longer than that to operate. There is a story that when Ernest Rutherford announced

the understanding that nuclear processes might provide a much more efficient energy source

than gravitation and thus that the age issue might be solved, Lord Kelvin himself was in the

audience. Rutherford was nervous, because Kelvin had imperiously denigrated the geologists,

and Kelvin was the grand old man of British physics at that time. Rutherford apparently

solved that problem by saying that “as Lord Kelvin wisely said, the age of the Sun is thirty

million years if no more efficient energy source than gravitation could be found” [the actual

quote was not recorded, but it was something like that]. So that’s how nuclear fusion saved

the Sun.

But the Kelvin-Helmholtz time does have a use in stellar astrophysics. Think about the

protostellar phase, before the center of the star is hot and dense enough to start fusion. The



gas that forms the star slowly contracts and releases energy and, as it turns out, the phase

basically lasts the Kelvin-Helmholtz time. We can even go further with that insight: if we

assume that the luminosity is roughly constant throughout the protostellar phase, then we

would expect that the gas cloud will contract rapidly when the cloud is large and spend most

of its time at small radii. That’s because the gravitational energy released is Egrav ∼ 1/R for

radius R, and since the time is T ∼ E/L for luminosity L, we would expect that T ∼ 1/R.

Indeed, more sophisticated models show that the initial contraction is fast. There’s a limit,

though: the cloud can’t contract faster than its free-fall time, which from Kepler’s third law

is Tff ∼
√
R3/(GM). For large enough clouds we expect the free-fall time to be a limiting

factor, and it is.

But there’s more! Let’s now think about gas giants such as Jupiter. Jupiter’s luminosity

is more than double what it gets from the Sun, and the energy being released is gravitational.

A recent estimate of Jupiter’s internal luminosity is LJ = 4.6 × 1024 erg‘s−1, and the order-

unity estimate of its gravitational energy is GM2
J/RJ = 3.7 × 1043 erg, so the timescale is

3.7×1043/4.6×1024 = 8.0×1018 s ≈ 2.6×1011 yr. This is much longer than the 4.6×109 yr

age of the Solar System. Thus gravitational energy release can easily last to the present

time.

Indeed, the distinction between gas giant planets, brown dwarfs, and stars is that

(1) stars are powered during most of their lives by fusion of ordinary hydrogen (just one

proton in the nucleus) into helium, (2) brown dwarfs are powered during part of their lives

by fusion of deuterium (heavy hydrogen, with one proton and one neutron in the nucleus)

into helium (this can proceed at lower temperatures than fusion of ordinary hydrogen),

and (3) gas giant planets never have interior temperatures high enough for any fusion, and

therefore are powered mainly by gravitational energy release.

What about terrestrial planets such as the Earth? Early in their lifetimes, gravitational

energy release is important. In fact, the collisions of planetesimals, if you think about it,

release gravitational energy! However, after that phase is over, at the temperature and

composition of terrestrial planets, they can’t contract very easily and thus they have very

little ongoing generation of energy through gravity. Instead, they just cool off (and their

surface temperatures are determined by the illumination they get from the Sun). These are

the sorts of processes you need to consider when you think about energy sources.

But there’s more! When a massive star (more than 8 M� at birth; we’ll learn more

later) evolves, the core fuses to more and more massive elements with shorter and shorter

times involved, until it gets to iron and can no longer extract energy from fusion (again, we’ll

learn more later). The core builds up until it collapses, and that collapse produces a neutron

star with a mass MNS ∼ 1.5 M� and radius RNS ∼ 10 km (yep, we’ll learn more about all

this later, too). The net result is that although the star emits ∼ few × 1051 erg by fusion



in its lifetime, the final collapse emits ∼ GM2
NS/RNS ∼ few × 1053 erg, i.e., about 100 times

as much energy as was emitted during the entire lifetime of the star! This collapse, in fact,

releases so much energy that it causes the star to explode in a supernova. Thus gravitational

energy release is critical to the evolution of a high-mass star.

One final comment is that E ∼ GM2/R is relevant for other sources of energy as well.

For example, consider rotation. A star can rotate arbitrarily slowly, so the minimum available

rotational energy is zero. But what about the maximum? The fastest that a star (which we

assume is gravitationally bound) can rotate is the angular velocity at which the matter at the

stellar surface is in orbit. From Kepler’s third law, that angular velocity is Ω =
√
GM/R3,

which means that the rotational speed is v = RΩ =
√
GM/R and the rotational energy is

(1/2)Mv2 ∼ GM2/R. There are astronomical objects that are powered by rotational energy

(e.g., pulsars), but the total energy release can’t be greater than the gravitational energy

release. What about temperature, i.e., energy that was inside the star and emerges as it

cools off? The virial theorem tells us that that in equilibrium the kinetic energy is 1/2 times

the gravitational binding energy, so that is also of the order of GM2/R. It also turns out,

for less obvious reasons, that the maximum magnetic energy is also less than GM2/R. All

in all, for multiple energy sources, GM2/R is a good formula to keep in mind.

In this lecture we have considered several non-fusion energy sources, but for completeness

here are two others that have astronomical applications.

Crystallization

When a liquid cools enough to become a solid, the solidification process releases energy,

which we will call crystallization even though the solid does not actually have to become a

crystal. Like with chemical processes such as burning (or digestion!), one can again see that

things are more or less electronic, in that it’s electrostatic interactions that determine the

energy. In more detail, it is typical that at some melting temperature (and thus crystalliza-

tion temperature) Tm, the amount of energy emitted per ion is ∼ kTm. A typical freezing

temperature for metals is a few thousand degrees, so 0.1–1 eV per ion is released, which

is even less than for burning. Nonetheless, there are some astronomical objects for which

crystallization is important. One is very old and cool white dwarfs, where the interior is in

the process of solidifying. Another is a terrestrial planet such as the Earth. But these have

to be pretty low-energy for crystallization to be important.

Fission

Fission releases approximately 1 MeV per nucleon, or about 10−3 of the rest mass energy.

For the Sun the rest mass energy is about 2 × 1033 g c2, or 2 × 1054 erg, so 0.1% of that is

2× 1051 erg, which is enough. So why couldn’t fission be a viable mechanism? Two reasons.

First, it would require that a large fraction of the Sun, at least 25% by mass, would be



made up of heavy elements such as uranium(!). But in reality uranium and other heavy

elements make up a tiny fraction of elements. Even more conclusively, fission is a process

that has a critical mass, and you’d better believe that a solar mass exceeds that critical

mass! Therefore, if you did set up that much uranium, it would blow itself to bits within a

ridiculously short time. So no dice on this mechanism for the Sun. However, there are some

astronomical bodies for which fission is an important energy source: the Earth, for one.


