
Equations of state: degeneracy and interactions

Fermi-Dirac particles: Suppose we have a particle such as an electron, proton, or

neutron which has a spin of 1/2 and is therefore a fermion. Let the energy reference level

be mc2 (again, other choices are possible!). The degeneracy is 2 (=2× spin plus 1), so the

number density is

n =
8π

h3

∫ ∞
0

p2 dp

e[−µ+mc2+E(p)]/kT + 1
. (1)

In general, after we subtract the mc2 reference energy E(p) =
√
m2c4 + p2c2 − mc2 =

mc2
[√

1 + (p/mc)2 − 1
]

and the velocity is

v(p) =
∂E

∂p
=

p

m

[
1 +

( p

mc

)2]−1/2
. (2)

As always, we should do some simple tests to determine whether this equation is correct, or

at least not obviously incorrect. In the nonrelativistic limit p → 0, we find that v = p/m,

i.e., p = mv, which is correct. In the ultrarelativistic limit p → ∞ we find that v =

(p/m)/(p/mc) = c, which is correct. From this formula, and from what would be generally

logical, the rough boundary in momentum between relativistic and non-relativistic is when

p ≈ mc.

Completely degenerate gas: Informally, degeneracy is when the density is high

enough that particles start encroaching on each other’s states. This has different impli-

cations for fermions than it does for bosons. For fermions this leads to Pauli exclusion and

thus the fermions are forced into higher energy states, whereas with bosons this leads to

multiple occupation of the same state. The result for bosons is a host of phenomena, such as

lasers, Bose condensation, superfluidity, and superconductivity. Some interesting properties

can be derived from the fact that the particles participating in these phenomena are in a

single state. For example, superfluids can’t rotate because the particles would be moving

with different velocities and hence would not be in the same state. Instead, any rotation in

a superfluid is quantized in vortices of normal fluid.

Complete degeneracy occurs when kT → 0, or more precisely when kT is much less than

−µ+mc2 + E(p) (given that we are using mc2 as our reference energy level). For fermions

the interesting part of the integrand is

F (E) =
1

e[E−(µ−mc2)]/kT ] + 1
. (3)

Ask class: what are the values for kT → 0 when the exponent is positive and when it

is negative? We see that F (E) = 0 or 1 for kT → 0, depending on whether, respectively,



E > (µ−mc2) or E < (µ−mc2). In this case, therefore, there is complete occupation up to

the “Fermi energy” EF = µ −mc2 and no occupation beyond that. When kT is finite, the

transition between occupation and no occupation occupies a width ∼ kT in energy. Only

these particles can interact, and this fact has great importance for processes such as energy

transfer. Specifically, it means that only a fraction ∼ (kT/EF ) of particles can interact, so

mean free paths are a lot longer than one would imagine. Note: presaging our discussion of

opacities, energy transfer tends to be dominated by whatever process can transport energy

over a long distance rapidly. If there is a lot of scattering/absorption, this slows down the

carrier particles. In degenerate matter, electrons travel a long way and hence conduction can

be important; similarly, in a metal the periodicity of the potential cuts down on interactions

and allows the electrons to travel long distances before they interact.

Remember that to squiggle order we can obtain the Fermi momentum from the uncer-

tainty principle: ∆p∆x > ~, so for a number density n we have pF ∼ ~n1/3. A dimensionless

parameter x = xF ≡ pF/mc is often used to characterize how relativistic the Fermi energy

is. Therefore,

EF = mc2
[
(1 + x2F )1/2 − 1

]
. (4)

Hence the chemical potential is µF = EF + mc2, which is the total energy of the most

energetic particles in the system. That is, it’s the “energetic cost” of adding another particle

of this type.

Ask class: given this kT → 0 approximation and the consequences for occupation

number, how does the integral for the number density simplify? In that case, we simply

integrate up to pF , with an integrand of F (E) = 1, and then stop because there is no more

occupation. Therefore,

n =
8π

h3

∫ pF

0

p2 dp =
8π

3

(
h

mc

)−3
x3F . (5)

Numerically, and dropping the “F” subscript,

n = 5.9× 1029

(
m

me

)3

x3 cm−3 . (6)

In density units, you have ρ/µe ≈ 106x3 g cm−3 for electrons (usually µe ≈ 2 in WD). The

line between nonrelativistic and relativistic is approximately x = 1 (as can be seen from

the x = p/mc definition), which is ∼ 106 g cm−3 for electrons. This is a useful number to

remember: when the density exceeds 106, the electrons are relativistic.

If the electrons are nonrelativistic, then EF = p2F/2m and, since pF ∼ ρ1/3 it therefore

means that EF ∼ ρ2/3. In the ultrarelativistic limit EF = pF c ∼ ρ1/3. Given this, we’d like

an idea of when the Fermi energy is “important”. That means that we should compare it



with other relevant energies, such as the thermal energy and the Coulomb energy. It is useful

to keep in mind that because mec
2 is about 511 keV, this corresponds to about 6× 109 K.

For neutrons the transition density to a relativistic Fermi energy is 6 × 1015 g cm−3,

which substantially exceeds nuclear density of 2.7× 1014 and is several times larger than is

expected to exist even in the cores of neutron stars, so neutrons are mostly nonrelativistic.

In a similar way, the Fermi pressure and Fermi internal energy density for strongly

degenerate particles can be computed by integrating up to the sharp cutoff pF . We find:

Pe =
π

3

(
h

mec

)−3
mec

2f(x) ≡ Af(x) , (7)

where f(x) = x(2x2 − 3)(1 + x2)1/2 + 3 sinh−1 x, and

Ee = Ag(x) , (8)

where g(x) = 8x3
[
(1 + x2)1/2 − 1

]
− f(x). Limiting forms are:

f(x) −→ 8
5
x5 − 4

7
x7 + · · · , x� 1

−→ 2x4 − 2x2 + · · · , x� 1
(9)

and
g(x) −→ 12

5
x5 − 3

7
x7 + · · · , x� 1

−→ 6x4 − 8x3 + · · · , x� 1
(10)

So far we’ve considered completely degenerate material, and we’ll go back to that in a

minute, but should also mention that a rough boundary between nondegenerate and degen-

erate matter is when EF > kT . This allows us to answer the burning question...

For Perspective: am I degenerate? In the old days we’d figure this out by con-

sidering my deeds and bad habits, but now we can answer it mathematically! To get our

answer we need to figure out the Fermi energy of my constituents, and then compare it to

my thermal energy. Ask class: if there are plenty of free particles of all kinds, what kind of

particle would be degenerate first? Electrons, because they have lower mass and EF ∝ 1/m

for nonrelativistic degeneracy. Ask class: is the nonrelativistic limit the correct one? Yes,

because 106 g cm−3 is the rough boundary for relativistic degeneracy, and I’m nowhere near

that!

In the examples above we’ve discussed matter that is completely ionized, so that elec-

trons are free to move around as they will. However, in me the electrons are mostly not free.

Instead, typically there are ions. So, let’s calculate first what the Fermi energy is assuming

the dominant species is a molecule of some sort. What is the most common molecule in

me? Water, of course. Water has an atomic weight 18 times that of hydrogen, which we

will round to about 20 times that of the neutron. The critical density at which the Fermi



energy becomes relativistic goes like M3, so for water it is about 203 ≈ 104 times that for

neutrons, or about 6× 1019 g cm−3. Below this density the Fermi energy is nonrelativistic,

and therefore goes like p2 ∼ n2/3. At my density of ∼ 1 g cm−3, the Fermi energy is therefore

∼ 10−13 times the rest mass energy of water, or 10−13×20 GeV=2× 10−3eV. The equivalent

temperature for 1 eV is about 104 K, so this equates to about 20 K versus about 300 K

for my temperature. Sadly, most of my mass is not degenerate! Of course, this is also true

for, say, a white dwarf, where the mass is dominated by nondegenerate nucleons but the

degenerate electrons provide the pressure.

But there may still be hope for me! Suppose that I have some small fraction of free

electrons running around in me. In particular, suppose that there are about 10 electrons per

molecule, and that about 1% of molecules have donated 1 electron to the general environment.

The density of free electrons is therefore 10−3 times the density it would be if all atoms were

completely ionized. For the purpose of this calculation, therefore, it’s as if I were completely

ionized but had a density of about 10−3 g cm−3. Using the same approach as before, we know

that for electrons the density at which relativistic degeneracy starts is about 106 g cm−3, and

that below this the Fermi energy scales as p2 ∼ n2/3. Therefore, at 10−9 of this density the

energy is 10−6 of the electron rest mass energy, or 0.5 eV. This equates to ∼5000 K, meaning

that my electrons would be degenerate by a factor of more than 10! Woohoo! Unfortunately,

J. Norman Hansen, professor of chemistry and biochemistry at the University of Maryland,

told me that in biological systems free electrons essentially don’t exist, because as soon as

one would be stripped off of a molecule it would go to another one, and hence electrons

spend time in one orbital or another. This is also the conclusion we’d reach from the Saha

equation: the ionization equation, modulo factors of little interest, would be something like

y2

1− y
∝ e−3×10

4/T (11)

for typical electron ionization energies of ∼2 eV, meaning that at 300 K the exponential is

like e−100, so there is virtually no ionization.

Thus, tragically, I’m not degenerate :). I’m crushed, but let’s move on to white dwarfs.

White Dwarfs: Sirius B is the stellar companion of Sirius A, which is the brightest star

in our night sky. It has the distinction of providing an amazing confirmation of Newton’s

laws (in the 1800s it became clear that Sirius A wobbles in its motion, so the 1862 discovery

of Sirius B by Alvan Clark confirmed Newton’s law of gravity outside our Solar System). But

unknown to the scientists of the time, Sirius B was also the first-discovered white dwarf, which

is held up against gravity not by radiation and gas pressure gradients but by gradients of

degeneracy pressure. By the 1920s it became clear that white dwarfs could not be explained

classically; a quantum mechanical explanation was finally provided in 1926 by R. H. Fowler.

In 1930, Subramanyan Chandrasekhar (known informally as Chandra) worked on the



fundamentals of the structure of white dwarfs, coming up with two major results while on

a 19-day boat trip from Madras, India, to England to work at Cambridge. One was the

mass-radius relation R ∼ M−1/3. The other was completely unexpected: white dwarfs have

a maximum mass. We’ll obtain that result using a simpler argument, due to Landau, than

was originally provided by Chandrasekhar.

We start with a reminder that when the Fermi momentum and energy are in the non-

relativistic regime, then EF ≈ p2F/(2m) for a particle of rest mass m, and since pF ∼ ~n1/3,

for a star with N degenerate particles in a radius R (so that n ∼ N/(4π/3R3) ∼ N/R3)

we have pF ∼ ~N1/3/R. Thus in the nonrelativistic case the Fermi energy per particle is

EF ∼ ~2N2/3/(2mR2).

In addition to the Fermi energy we have the gravitational potential energy, which is

negative. Note that although the Fermi energy we are considering is that of the electrons, the

gravitational potential energy will be dominated by the heavier baryons (i.e., the neutrons

and protons). Say that the baryonic mass is mB and pretend that there is one baryon

per electron (in reality, for nuclei heavier than hydrogen, it’s more like two baryons per

electron; we’ll get to that later). Then the gravitational potential energy per electron is

EG ∼ −GMmB/R ∼ −GNm2
B/R because M ∼ NmB under our current approximations.

This means that the total energy per electron in the nonrelativistic case is

Etot = EF + EG ∼
~2N2/3

2mdR2
− GNm2

B

R
, (12)

where now we write md for the mass of the degenerate particle, i.e., md = me for degenerate

electrons. We can find the equilibrium radius Req by taking the derivative of Etot with

respect to R and setting it equal to zero. This gives R ∼ N−1/3, and since M ∼ N we

find R ∼ M−1/3. As we add mass to a white dwarf, the equilibrium radius decreases like

Req ∼M−1/3 as long as electron degeneracy is nonrelativistic.

But given that ρ ∼M/R3, the equilibrium average density goes like M/
(
M−1/3)3 ∼M2.

Thus higher-mass white dwarfs have higher densities. Higher densities means higher Fermi

momenta. Eventually, the typical electron Fermi momentum in a white dwarf will become

relativistic. What happens then?

For relativistic Fermi momenta, EF ≈ pc ∼ ~n1/3c ∼ ~cN1/3/R. Under the same rough

assumptions as before, the total energy per degenerate particle is now

E = EF + EG =
~cN1/3

R
− GNm2

B

R
=

1

R

(
~cN1/3 −GNm2

B

)
. (13)

Unlike in the nonrelativistic case, here both terms scale as R. Again, suppose that we want to

find the equilibrium radius Req, which we do by minimizing the total energy as a function of

R. Suppose first that N is small. Then E is positive, so that E can be decreased by increasing



R, and at some point the fermions become nonrelativistic so that EF ∼ p2 ∼ 1/R2, and a

stable equilibrium is possible. However, if E is negative then E can be decreased indefinitely

by decreasingR, leading to instability and collapse. The boundary point inN is the boundary

for stability, and comes at

Nmax ∼
(

~c
Gm2

B

)3/2

∼ 2× 1057 . (14)

This gives a mass of about 1.5M� for the maximum, which is indeed approximately the

maximum possible mass for a white dwarf. Note, though, that this derivation is a bit fudged.

We sloppily assumed that the number µe of baryons per degenerate fermion is 1, and we

dropped a few factors along the way. If we do it more carefully, we find a maximum mass of

1.46(2/µe)
2 M�, which is about 1.35 M� for a white dwarf made of iron-56. Because the same

chain of reasoning applies to neutron stars, for which µe ≈ 1 because the degenerate particles

(neutrons) are the same as the heavy baryons, we’d expect that neutron stars would have

maximum masses of about 6 M�. Instead, the maximum mass, although not well known, is

more like 2 − 3 M�. Can you think of what effects might reduce the maximum mass, and

make it much more uncertain for neutron stars than for white dwarfs?

Consequences for black holes: from Chandra’s work it was known that a white dwarf

more massive than about 1.4M� could not exist, so initially this seemed to doom any star

with an initial mass greater than this. However, it turns out that winds and the planetary

nebula phase (to be treated later) remove a lot of mass, and up to ∼ 8M� or so initial mass

stars end up as white dwarfs. With a higher initial mass, however, the star can’t end its life

as a white dwarf. Instead, it collapses further, to a neutron star or a black hole, and the

collapse releases enough energy that the star explodes in a core-collapse supernova.


