
Other radiative opacities and conduction

H− Opacity

In the last class we talked about atomic opacities. Perhaps surprisingly, for cool stars,

molecular and dust opacities play major roles. In addition, the negative hydrogen ion, H−,

can be extremely important (for example, it is the most important source of opacity in the

solar photosphere). The extra electron in the hydrogen atom is bound, but not by much:

only 0.75 eV. This means that the highest temperature at which we would expect this to

exist is given by kT ∼ 0.75 eV, which is close to the photospheric temperature of the Sun.

Note also that for this ion to be formed, neutral hydrogen has to capture a free electron,

meaning that both neutral hydrogen and free electrons need to be present. Therefore, H−

opacity is unimportant when there is no neutral hydrogen, or when the temperature is

so low that everything is neutral. Metals, with more loosely bound outer electrons, can

contribute to the free electron population and therefore are important for the H− opacity.

At T < 2500 K or for low-metallicity stars, the H− opacity is small. For 3000 K< T <6000 K,

10−10 < ρ < 10−5 g cm−3, and reasonable hydrogen and metal abundances, an approximate

fitting formula for the opacity gives

κH− ≈ 2.5× 10−31(Z/0.02)ρ1/2T 9 cm2 g−1 , (1)

where as usual T and ρ are in cgs units. Tables of this opacity exist, and are to be preferred

to the fitting formula for serious applications.

When the temperature is below about 3000 K, molecules and dust form and are ex-

tremely important for the atmospheric opacities of low-mass stars. For example, water

(gaseous, of course!) has been found in sunspots, where the temperature is low(!). Maybe

even more surprisingly, a prominent source of lines in the spectra of low-mass stars is tita-

nium oxide (!!!), which despite the low abundance of titanium has the right combination of

characteristics to make those lines. Molecular and dust opacities are extremely complicated

because of their extra degrees of freedom (e.g., molecules, unlike atoms, can vibrate along

molecular bonds and can rotate), and are still not especially well characterized for many

transitions.

Conduction

We will now transition from energy transport by photons, to a type of energy transport

by particles: conduction. In a general way, some of the same principles apply as they do

for photons. For example, when there is a temperature gradient, particles from the hotter

region can carry energy to the cooler region. As we discussed briefly earlier in the course,

given that at a given temperature T the radiation energy density scales as T 4, whereas the

energy density of particles goes as nkT for number density n, with all else equal we expect



that at lower temperatures there will be a larger fraction of the total energy in particles than

in radiation. That doesn’t prove that conduction has to be important at low temperatures,

but it suggests that we might look in that direction.

Now let’s think about the differences between energy transport by radiation and by

conduction. The two biggest fundamental differences are (1) electrons are fermions whereas

photons are bosons, and (2) electrons have electric charge whereas photons do not.

First, a reminder about the fermion/boson difference. Fermions don’t like other, identi-

cal, fermions. That’s a bit anthropomorphic, but it reminds us that two identical fermions

(such as two electrons, or two protons, or two neutrons) cannot occupy the same quantum

state (position, momentum, spin up/down). In contrast, bosons (such as photons) like each

other and are happy to occupy the same quantum state. The reason that this is relevant

is that when you have degenerate electrons (which you recall means that the Fermi energy

EF is greater than the thermal energy kT ), only a small fraction ∼ kT/EF of electrons can

interact, because otherwise two or more electrons will occupy the same state.

This means that when you have strongly degenerate matter, from the standpoint of

interactions it is as if the density is much smaller than it actually is, and thus the mean free

path for electrons is longer than we might have guessed. If you scatter one electron with

another in the process of conduction, then both the initial and final electron states have to be

unoccupied. Thus degenerate matter has high thermal (and electrical) conductivity because

the electrons can travel a long way. Nondegenerate matter does not have that advantage,

although for matter with a lattice structure or high mobility of electrons (think about a

crystal or a metal), electrons can also travel long distances. Thus in astrophysical settings,

conductivity is most common when you have degeneracy or another circumstance where the

electrons can travel great distances.

The electric charge of electrons (versus the neutrality of photons) comes in when we

consider a region of high density and temperature next to a region of low density and

temperature. The electrons in the high density/temperature region will move more quickly

and with higher electron flux than the ones in the low density/temperature region. Therefore,

there is a net flux of electrons. For photons that would be it, but for electrons an electric

field would develop due to the charge imbalance, and would quite rapidly prevent any net

flux of electrons. Therefore, the flux of charge in one direction must equal the flux of charge

in the other direction. But then how can there be a net transfer of energy? The answer is

that even though the net flux of particles is zero, the energies are not the same (one side is

hot and the other is cold), so energy flux is nonzero.

Now let’s think about which particles will contribute the most to conduction. In an

ideal monatomic gas of temperature T , the energy per particle is E = 3
2
kT . Given that,

and given that the kinetic energy is (1/2)mv2, in thermal equilibrium lighter things (such as



electrons) will travel faster than heavier things (such as ions). For example, if we consider

pure hydrogen, because protons are ∼ 1800 times more massive than electrons, the electrons

move ∼
√

1800 ∼ 43 times faster than the protons. The ratio is even larger if the ions are

heavier. This means that electrons dominate conduction, and that to a reasonable approx-

imation you can think of a fast-moving electron gas and a nearly stationary background of

ions.

For matter in most parts of normal stars, radiative energy transport is much more

important than conductive energy transport. For example, if we have an ionized carbon gas

at T = 106 K and ρ = 1 g cm−3, then it turns out that the mean free path for an electron is

10−4 times the mean free path for a photon.

For degenerate matter, conductivity can be the main form of energy transport. We

can get some insight into more details by asking: will electron scattering off of electrons be

more or less common than electron scattering off of ions? If ions with nuclear charge Z > 1

have the same number density as the electrons, then ions are more important, because the

cross section goes like Z2. Thus even if the system is nondegenerate, you would think that

the mean free path of the electrons would be determined by electron-ion scattering. If the

electrons are degenerate then the ions dominate scattering even more, because in degenerate

electrons both the initial and final state of the electron has to be unoccupied. As we said

before, only a kT/EF of the electrons can interact in that situation. For electron-electron

scattering, we need both the initial and final states for both electrons to be unoccupied. For

electron-ion scattering, we need this only for one electron.

If the ions are in a perfect lattice, then the potential is exactly periodic and the electrons

move as if they were free (this is why metals on Earth conduct so well; they are nearly periodic

so the electrons move a long way). Therefore, electron-ion scattering depends on impurities

and/or imperfections relative to a perfect lattice. This is one place where the lack of catalysis

to equilibrium nuclear matter is important, because it increases resistivity dramatically! In

any case, this is a reason why conductivity is so important in high-density things such as

neutron stars: in much of the crust, the ions are in a lattice-like structure, so conductivity

is huge.

To see what this means, suppose that you were in a hut in winter with terrible insulation.

How would the temperature difference (inside to outside) compare with being in a hut with

excellent insulation? The ∆T is much larger when the insulation is good. Similarly, if you

had a situation in which the thermal conductivity was large, and you fixed the total energy

flux, what would this mean about the temperature gradient compared to when the total

conductivity was small? The temperature gradient is smaller when the conductivity is high

(equivalently, when the opacity is low). This means that degenerate objects such as white

dwarfs or neutron stars are close to isothermal in their interiors.



Now we will treat conductivity as in our textbook. We can use Fick’s law of diffusion:

Fcond = −De
dT

dr
. (2)

You may note a difference from how we treated radiative diffusion: there, we used d(aT 4)/dr.

The reason for the difference is that the energy content of the particles is like kT , whereas

the energy density of radiation is like aT 4. It is convenient to recast this in a form that is

similar to that for radiation, by defining a “conductive opacity”

κcond =
4acT 3

3Deρ
. (3)

The conductive flux from the diffusion equation is then

Fcond = − 4ac

3κcondρ
T 3dT

dr
. (4)

Using this, we can see another way how to combine the opacities: the energy fluxes should

add, so Ftot = Fcond + Frad, meaning that 1/κtot = 1/κrad + 1/κcond. Therefore,

Ftot = − 4ac

3κtotρ
T 3dT

dr
. (5)

The diffusion coefficient has the general form

De ≈ cV veλ/3 , (6)

where cV is the specific heat at constant volume of the electrons, ve is the typical speed of

the electrons, and λ is a typical mean free path. We can see why each factor is needed:

the higher the specific heat, the greater the energy difference for a given dT ; the higher the

velocity, the faster the energy will be transported; and the longer the mean free path, the

greater the temperature gradient that will be sampled.

Now let’s go through a rough derivation of the dependences of those three factors for

nonrelativistically degenerate electrons. All of this assumes that the ion positions are un-

correlated with each other; lattice effects can be substantial in a real star. The specific heat

for degenerate electrons is proportional to cV ∝ Txf (1 + x2f )1/2, where xf ≡ pF/(mc), where

pF is the Fermi momentum. For nonrelativistic electrons xf � 1, so to leading order this

expression is something like Txf , and remember that xf ∼ n
1/3
e . Note: our textbook talks

about ρ/µe instead of ne, but I’m using ne for simplicity. So, that’s the first factor: cV ∝ Txf .

How about the velocity? Remember that for degenerate electrons, only the electrons

at the top of the Fermi sea can interact, meaning electrons within kT or so of EF . If the

electrons are strongly degenerate then EF � kT and thus the energy of the interacting



electrons is ∼ EF . That means, for nonrelativistic electrons, that meve ≈ pF . Because

xf ∝ pF , we find that ve ∝ pF ∝ xf ∝ n
1/3
e . This is the second factor.

Finally, what about the mean free path λ? Using our general formula, λ = 1/σCnI , where

σC is the Coulomb scattering cross section and nI is the number density of the ions. For the

cross section, as a rough approximation the usual estimate is a cross section corresponding

to an impact parameter that will “significantly” change the path of the electron, meaning

one in which the electrostatic energy is equal to the kinetic energy of the electron. Therefore,

the impact parameter s is given by

mev
2
e ≈ Zce

2/s⇒ s ∝ 1/v2e ∝ n−2/3 (7)

for an ion charge Zc. The cross section itself is σC ∝ s2 ∝ n−4/3. Therefore, λ ∝ n4/3/n ∝
n1/3, and the diffusion coefficient goes like n. Putting in all the constants and mean molecular

weights, a decent approximation to the conductive opacity is

κcond ≈ 4× 10−8µ
2
e

µI

Z2
c

(
T

ρ

)2

cm2 g−1 . (8)

Just for fun, let’s apply the same logic when the degeneracy is relativistic. In that

case, the specific heat is Tx2f ∝ Tn
2/3
e . Since the speed is relativistic, v ≈ c. For the

characteristic impact parameter, we want to know when Zce
2/s = EF ≈ pF c ∝ xf ∝ n

1/3
e ,

so the impact parameter s goes like n
−1/3
e , the cross section goes like n

−2/3
e , and the mean

free path goes like 1/σn ∼ n−1/3. The diffusion coefficient then goes like n1/3 instead of n,

and the conductive opacity goes like κ ∼ T 2/ρ4/3. This expression has little use in practice

because at densities great enough that degeneracy is relativistic, correlations between ions

are usually very significant, causing substantial deviations from this dependence.

Comparison of radiative and conductive opacities

Recalling that to a very rough approximation the bound-free opacity is

κb−f ≈ 4× 1025Z(1 +X)ρT−3.5 (9)

(with everything in cgs as usual) how does this compare to the conductive opacity? Let’s

compare typical situations in the center of the Sun and in the center of a white dwarf.

Suppose that in the center of the Sun we have T ≈ 107 K and ρ ≈ 100 g cm−3. Then

κb−f ≈ 100 cm2 g−1. In the center of a white dwarf you might have T = 106 K and

ρ = 106 g cm−3. Then κcond ≈ 10−7 cm2 g−1, according to this formula (it will probably be

even less). The net result is that the conductive opacity in very degenerate material is tiny,

so to a decent approximation the whole interior can be considered isothermal.

Tabulated opacities



The simple expressions we’ve used for the different types of opacities are used to illumi-

nate the physics, and in this respect are quite useful. However, when you get down to real

modeling you never use them. Instead, you use the painstakingly compiled opacity tables

from places like LANL or LLNL. Much of this relies in turn on atomic transition data, which

is itself far from complete; by some estimates, half the lines in the solar spectrum are not

identified! Still, for most purposes (other than for very cool stars) the tables are adequate.


