
Convection

Having examined energy transport by radiation and by conduction, we now get to look

at the final entry on the list: convection. Convection is important in some parts of most

stars, and its very basics are simple. Unfortunately, in detail convection is so complicated

that not only has no one developed a clear analytical theory, but it is in practice impossible

to do everything correctly even with computers! Here, we give the qualitative aspects of

convection; please see our textbook for a much more detailed treatment.

The general process of convection has some fluid element rising or falling and dissipating

its energy as it does so. Let’s begin our consideration of convection by thinking about

a spherically symmetric star which is everywhere an ideal gas but with temperature and

density that vary with radius. In an ideal gas, the pressure P , number density n, and

temperature T are related by P = nkT . Now suppose that some element of that gas has

slightly higher temperature than the average of its environment. If n is equal to or higher

than average as well, then P is higher than average. Higher pressure would mean that the

element would expand against its environment, and do so quickly: it would happen at the

speed of sound. We will, therefore, assume that even if the temperature is higher than

average, the fluid will adjust so that the pressure is the same as average. Thus, since T is

high and k is a constant, n must be lower than average.

The lower density of the fluid means that it is buoyant, like a helium balloon in air:

basically, the pressure gradients around it would balance the weight of something of average

density, so since this fluid element has less than average density and thus less than average

weight, the net force is upward. Therefore, the first thing that the fluid element does is to

rise.

Now what? If it rises, then it goes to a region of lower pressure, which means that

the element expands until it establishes equilibrium with the new pressure. Expansion also

cools the element, so both the cooling and the lowering of the density have to be taken

into account when we compute its equilibrium state. One possibility is that after reaching

pressure equilibrium the element is now denser than the average density at the new height.

In that case, the element sinks back down. But if after reaching equilibrium the element has

a lower density than the average at the new height, then it keeps rising.

Now let’s think about what this means for energy transport. Suppose that the fluid ele-

ment rises much more slowly than the speed of sound, so that pressure balance is maintained,

but much more rapidly than the time necessary to have heat leak out of (or into) the fluid

element. Then the total heat in the fluid element is conserved, and if we can ignore viscosity

(which we usually can for this purpose), it means that the element moves adiabatically. This

means that the entropy is conserved, so that the temperature gradient is fixed for a given



pressure gradient. Call this gradient ∇Tad. Thus, for a given fluid element with an initially

small perturbation, we know how its temperature will change as it rises.

Given this, what is the condition on the gradient of the temperature of the surrounding

medium such that the fluid element will continue to rise once perturbed upwards? Since the

surrounding temperature has to continue to be smaller than the temperature of the fluid

element (why? Because the element has to be buoyant, i.e., its density has to be lower

than that of the surroundings, and if P = nkT is the same as the surroundings then T

has to be higher than the surrounding), the temperature of the environment has to drop

with increasing height faster than the temperature of the element drops. Therefore, the

temperature gradient ∇T must satisfy ∇T > ∇Tad. This is the Schwarzschild criterion

for convection, brought to you by the same person who came up with the Schwarzschild

spacetime for uncharged, nonrotating black holes.

If the Schwarzschild criterion is satisfied, it implies that the fluid has large-scale motion.

That is, the fluid isn’t just individual particles that move for one (tiny!) mean free path,

but it can have elements that move large distances. In addition to hot parcels of fluid rising,

cold parcels will drop, so there is a net transfer of energy from the hot stuff below to the

cold stuff above. Note that the macroscopic motions mean that concepts such as mean free

path are a bit dicey, compared to their rather clearer analogues for radiative or conductive

energy transport. There are also complicating effects in reality. For example, heat really can

leak into or out of the fluid element as it rises or sinks, and compositional gradients can also

complicate things. Before addressing issues like that, though, let’s hold on a bit and develop

our general intuition about convection some more.

People frequently determine whether a given layer of fluid is convectively unstable by

calculating its structure without including convection, then applying the Schwarzschild cri-

terion or an alternative. Let’s assume that for the layers of interest, all the energy was

generated at a much deeper layer. Given that large temperature gradients are needed for

convection, what does this imply about other opacities? The amount of energy per time to

be transported is fixed by the deeper layers (where energy is generated by nuclear fusion

in stars), so large temperature gradients would have to mean high opacities (why is that?).

With this in mind, should we expect white dwarfs or neutron stars to have convective layers

under ordinary conditions? No, because for these stars conduction is extremely effective, so

the temperature gradient is tiny and convection is suppressed. Only when other forms of

energy transport are ineffective does convection come to the rescue. This, by the way, is one

reason why we can often ignore the diffusion of energy out of our fluid elements: for con-

vection to be important at all, this diffusion needs to be relatively weak. In main sequence

stars convection tends to be most important in the somewhat cooler layers, where line and

edge opacities are important. Low-mass stars have large convective zones for this reason.



One interesting consequence of this is that because of all the roiling motion of the

gas, magnetic field lines get tangled and can be amplified, in a process called a magnetic

dynamo. Thus low-mass stars have relatively strong magnetic fields and as a result they

have overwhelming magnetic flares. For that reason, life around a low-mass star would be

extra challenging because it would have to deal with major surges of energy that come along

pretty frequently. Never count out life, but you’ll probably want to look elsewhere for a

vacation home! In contrast, higher-mass stars have fewer sources of opacity and therefore

have relatively weaker fields.

So how do we put this in to a description of energy transport? The most widespread

model is mixing length theory (MLT). In mixing length theory the assumption is that the

fluid element rises some distance `, then releases its energy (i.e., comes into thermal equilib-

rium with the new environment). The reverse process can also happen: a cool fluid element,

which is denser than average because of pressure balance, sinks some distance ` and gains

energy from the environment. In both cases, energy is transported outward. Of course, the

fluid element can “leak” energy on its way up or down as well.

This is the core of mixing length theory. The amount of energy that it transported

depends on `, the buoyant velocity w, the heat content of the star as a function of depth,

and how much energy drifts out of the elements as they rise or fall. These quantities can

be computed at a single radius, making MLT a “local” theory and therefore useful for

computation. But let’s not forget that this is a crude approximation rather than being the

real thing...

Assumptions of MLT

These assumptions constitute the “Boussinesq” approximation:

1. A readily identifiable fluid element has a dimension comparable to `.

2. The mixing length is much shorter than any other scale length associated with the star

(e.g., pressure, temperature scale heights). This assumption is violated for the sun, where the

pressure scale height is comparable to what is needed for ` to explain the inferred convective

transport!

3. The fluid element is always in pressure equilibrium with its surroundings. This means,

for example, that `/w is much shorter than ascent or descent times.

4. Acoustical phenomena, shocks, etc., may be ignored.

5. The density and temperature of the fluid element deviate only slightly from the environ-

ment.

Together, these assumptions mean that the fluid is almost incompressible and that



density and temperature variations are small. Note that assumption 2 is often violated,

and that assumption 1 is troublesome by itself: if the fluid element is the same size as `, it

is tough to picture the slow drift and leakage of energy!

Another problem is that lab experiments can’t simulate the conditions in stars, in the

sense that some of the dimensionless numbers that characterize the fluid are a factor of

a billion or so different between stars and laboratories. However, note also that this is a

common situation in astrophysics. What you have to do in these circumstances is do the

best you can, make reasonable assumptions, and solve a simpler problem. It would, of course,

make no sense to go wild with this and end up with a finely refined variant of MLT when

you know that some of the initial assumptions are suspect!

Suppose now that convection occurs. What does this do to the temperature gradient?

It tends to reduce the temperature gradient, by putting hot fluid higher and cold fluid lower.

If we were to try to incorporate convection into the same general opacity scheme as we used

for radiation and conduction, would we include it linearly or harmonically? Harmonically,

because as another channel for energy transport it increases the flux and decreases the

effective opacity.

Suppose that convection is extremely efficient. To a first approximation, what is the

temperature gradient you’d end up with after convection had changed the gradient? It will

be very close to, but slightly larger than, the adiabatic gradient. It has to be larger to

continue convection, but if convection is efficient then ∇T doesn’t have to be much larger

than ∇Tad to transport lots of energy.

The flux due to efficient convection thus turns out to be

Fconv = ρwcP∆T . (1)

Here a parcel of energy is typically going at a speed w, the typical temperature contrast

with the surroundings is ∆T , ρ is the density of fluid and cP is the specific heat at constant

pressure (energy per mass per temperature). How can we test if this is reasonable? We can

verify that the units work. It makes sense that if there is no temperature contrast (∆T = 0)

there will be no flux. The higher the speed the larger the flux, which is what the equation

says. If the specific heat is low, then little energy can be transported, so F should depend

directly on cP as it does. Finally, if there is more matter (high ρ), more flux is transported.

At this point you might be, and indeed I hope you are, dissatisfied. Mixing-length theory

was developed in the 1950s. But we have advanced decades in our understanding, and have

computers undreamt of in that time. Why not just do it right!

To address that question, I need to expose you to the full horror of the Navier-Stokes



equation:
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Feeling better? No? Maybe it will help if I tell you that this is a gussied-up version of

F = ma in fluids, where ρ is the density, v is the velocity, P is the pressure, and η and ζ

are related to the shear and volume viscosity of the fluid. Didn’t help? Sorry about that.

In any case, not only do you have to solve this as well as the equations for heat flow into

or out of the fluid element, but the biggest issue here is that the Navier-Stokes equation is

nonlinear: the (v · ∇)v term is like the square of the velocity.

The reason this is a big deal is that for nonlinear equations you cannot add two solutions

together and get another solution. Let’s contrast that with a linear system such as Newtonian

gravity. Say that you have a test particle and you want to know its gravitational acceleration

in a system such as the Solar System, which has many separate gravitating bodies. All you

need to do is to figure out the acceleration due to one body (say, the Sun) and add to

that the acceleration from the next body (say, Jupiter), and so on. This leads to a lot of

nice mathematical properties and makes it relatively easy to solve on a computer (although

challenges always exist).

But for a nonlinear system, it doesn’t work that way. General relativity, for example, is

nonlinear, although for weak gravity you can linearize the system of equations (you have to

be able to do this, since Newtonian gravity is the weak-gravity limit of general relativity).

If you have a test particle near two black holes, you can’t figure out its total acceleration

by adding the acceleration that would be due to one black hole by itself, to the acceleration

from the other black hole by itself.

General fluid dynamics, which we would have to solve to get a first-principles treatment

of convection, is nonlinear. This leads to a lot of very complicated phenomena, including

turbulence, which are important in astrophysics but can’t be treated exactly. We’ll close

this lecture with an apocryphal quote from Werner Heisenberg: “When I meet God, I will

ask him two questions. Why quantum mechanics? And why turbulence? I really think he’ll

have an answer for the first.”


