
The Sun: A Great Big Heap a’ Friendly Self-Luminescent Gas

The Sun, being so close, allows us a far more detailed opportunity to study it than

most stars allow. This means we can learn a great deal about the Sun that isn’t available

otherwise, and hence detailed aspects of stellar structure and evolution. Ask class: what

are some of the things we can observe only on the Sun? Examples include neutrino fluxes,

extremely detailed helioseismology, and angular resolution of sunspots (allowing observations

of rotation). We will consider some of the information available via these paths.

Much of the evolution of the Sun follows the low-mass path we discussed earlier. As in

the last class, if we wanted to do a detailed model, we would construct it from the basic

equations of stellar structure, with the known mass and composition of the Sun, then proceed

to evolve it under conditions of near-equilibrium. But unless we want to become specialists

in this field, we get more insight by scaling techniques.

Let’s start with a uniform density star supported by ideal gas pressure. The internal

energy density is
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The internal energy U = EV , and since ρV = M , U = 3
2
MkT/(µmp). The virial theorem

implies that U = −Ω/2, which for a uniform density star is 3
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You may reasonably object that the constant density approximation surely doesn’t hold for

the Sun, and aren’t we about ready to give up these silly approximations? Well, sort of.

Ask class: what can one say about how T should depend on M and R, from dimensional

arguments and the virial theorem? Since kT is an energy, one could say that it should

be related to the kinetic energy per particle, which is ∼ GMm/R ∼ M/R, so T ∼ M/R.

Expressing this in terms of M and ρ ∼M/R3, one can say generally that T ∝ µM2/3ρ1/3 is

the scaling one expects from a large variety of models. So we’ll go with that for the moment.

Comment: the following approach is simply to get a general idea of how the Sun’s

luminosity changes with time. Therefore, in order to get a quick estimate, we are going to

make a number of approximations. These include dropping all constant factors, and using

ratios instead of derivatives. This will give the overall view of the evolution: does the Sun

become brighter or dimmer with time, and by roughly how much? The constant factors

could be dropped anyway, because part of the scaling solution strategy is to normalize at

the end using observations (e.g., the current luminosity of the Sun).

Slipping further into the debauchery of scaling approximations, we can take the energy



transfer equation

L = −4πr2c

3κρ
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(3)

and get some kind of average over the star by “cancelling the d’s” and writing L ∝ RT 4/κρ.

Assuming a Kramers opacity, κ = κ0ρT
−3.5, and using the mass equation R ∝ (M/ρ)1/3, we

find

L ∝ M5.33ρ0.117µ7.5

κ0

. (4)

From this, the most important factor in the change in the Sun’s luminosity as it evolves

is the mean molecular weight, because the mass changes little (winds are negligible on the

main sequence). Ask class: qualitatively, from this would one expect the Sun’s luminosity

to go up or down as it evolves? Up, because conversion of hydrogen to helium increases the

mean molecular weight.

How else can we simplify? Ask class: how much do they trust the exact exponents

written above? Not much, given the other approximations. So what can we do? First, the

mass of the Sun hardly changes at all during its main sequence lifetime (the solar wind spits

out Ṁ ≈ 10−14M� yr−1), so we can ignore that factor. What about other factors? Ask

class: how much do they expect that the Sun’s luminosity has changed over the past four

billion years? Not too much, otherwise life couldn’t have arisen (if the Earth were frozen

or boiled). We also know in advance that the radius hasn’t changed much, so neither did

ρ, and with a small exponent we can drop that factor as well. How about κ0? Ask class:

in the majority of the Sun, do they expect κ0 to depend significantly on the hydrogen and

helium fractions, given that bound-free dominates? No, it’s mainly metals. So we pretend

that κ0 is more or less constant with time as well and end up with
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We therefore need to figure out how µ changes with time. We know that µ(t) = 4/(3+5X(t)),

so it’s a matter of how rapidly the hydrogen is consumed. Ask class: If there is a luminosity

L(t) generated by hydrogen burning, and a release of Q = 6×1018 erg g−1, what is the change

in X(t) with time for a star of mass M? It’s dX/dt = −L/MQ. We then find
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The differential equation for L(t) becomes
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with the solution
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or for the Sun, with t� = 4.5× 109 yr and µ(0) ≈ 0.6,
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Fitting L(t�) = L�, L(0) ≈ 0.8L�. Now, incidentally, given our other crimes against exact

solution, I personally would have made the approximation 32/15 ≈ 2 and 2/15 ≈ 0 in the

differential equation for L(t), so the final solution would have a −1 instead of a −15/17, but

that’s a personal preference. So, it appears that the Sun initially had a luminosity about

20-30% less than it does now. We discussed some of the implications of the “faint young Sun

paradox” in a previous class, but now we can ask: what does this say about the conditions

necessary for life elsewhere, if we assume that surface liquid water is necessary?

Rotation

Now we need to take a hesitant step away from spherical symmetry and consider rotation.

Be warned that for this we’ll need to delve into considerably more complicated equations

even in the simplest approximation. Try to avoid whiplash!

We know that stars rotate. Ask class: what modifications have to be made? One

consequence is that the equation of hydrostatic equilibrium has to be modified to take cen-

trifugal acceleration into account. We also can’t just use dP/dr, since with rotation we no

longer have spherical symmetry. Thus we need to use the vector gradient, ∇P , instead of just

dP/dr. Then we have ∇P = −ρgeff , where geff includes both gravity and centrifugal terms.

Ask class: can anything fundamental about the star depend on the angular velocity ω to

the first power? No, because that would mean that the direction of rotation matters, which

it can’t (imagine standing on your head and looking at the star; the direction has changed,

but obviously the structure didn’t). The centrifugal acceleration for angular velocity ω a

distance s from the rotation axis is ω2ses, where es is a unit vector perpendicular to the

rotation axis, pointing outwards. Things are especially simple if the centrifugal acceleration

can be derived from a potential:

ω2ses = −∇V . (10)

This is equivalent to saying that the angular velocity depends only on s, so that it is constant

on cylinders. This is called conservative rotation.

We can then combine the gravitational potential φ (so that the acceleration of gravity

is −∇φ) and centrifugal potential V : Ψ = φ + V (where V = −
∫ s

0
ω2s ds) and rewrite the

equation of hydrostatic equilibrium as

∇P = −ρ∇Ψ . (11)

This means that the pressure gradient and potential gradient surfaces are parallel to each

other. Therefore, equipotential surfaces Ψ=constant correspond to surfaces of constant pres-



sure, so pressure is a function of Ψ only. We can take the curl of the equation of hydro-

static equilibrium to find 0 = −∇ψ × ∇ρ (remember that the curl of a gradient is zero,

so ∇ × ∇P = 0, for example), showing that the density is also constant on equipotential

surfaces. If we assume an ideal gas, in which P = (ρ/µmp)kT , then ρT is also only a function

of Ψ if the star is chemically homogeneous; since ρ is only a function of ψ, this means that

for a chemically homogeneous star T is constant on equipotential surfaces. If the star is

not chemically homogeneous, then it is T/µ that is constant on equipotentials. We can also

see that if the pressure is a function only of the density, P (ρ), then the rotation must be

conservative, because ∇P (ρ)/ρ can be expressed as the gradient of a potential:
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so Ψ = −
∫

dP
dρ

(1/ρ)dρ. This implies that the rotation of white dwarfs should be conservative,

and hence equal along cylinders, because the pressure is degeneracy pressure and therefore

depends on density alone (to a good approximation).

Now let’s consider what happens when we include radiative energy transport. The

equation of transport can be written

F = − c

3κρ
∇(aT 4) = − c

3κρ

d(aT 4)

dΨ
∇Ψ = −k(Ψ)∇Ψ , (13)

(again using∇ because we can’t assume spherical symmetry any more) because κ = κ(ρ, T ) =

κ(Ψ). Here again −∇Ψ is the effective gravity including centrifugal terms. Now combine

this with the equation of energy conservation, which we write in the form ∇ · F = ερ:

∇ · F = − dk
dΨ

(∇Ψ)2 − k(Ψ)∇2Ψ = − dk
dΨ

(∇Ψ)2 − k(Ψ)

(
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s
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)
= ερ . (14)

Here we’ve made use of Poisson’s equation, ∇2Φ = 4πGρ. Can this equation hold every-

where along equipotentials? No! Everything except the first term and the second term in

parentheses is a function of Ψ only (remember ε = ε(ρ, T ) = ε(Ψ)), and is therefore con-

stant along equipotentials. Consider now as an example something that rotates uniformly;

then (1/s)d(s2ω2)/ds is constant, period. However, the first term, −dk/dΨ(geff)2, is defi-

nitely not constant; the effective gravity is greater at the poles than at the equator, along

equipotentials.

This result, that when rotation enters that radiative transport and simple energy con-

servation can’t be satisfied simultaneously, is known as von Zeipel’s paradox. The way out

comes from the realization that we have overconstrained the problem; when rotation exists,

another form of energy transport arises. This is meridional circulation. Note, by the way,

that the nonconservation of energy under our strict assumptions goes like ω2, as was ex-

pected physically. Meridional circulation also happens for non-conservative rotation. In a



radiatively dominated region of the star (specifically where (∇ad−∇)/∇ad ∼ 1), and assum-

ing that the density in the region of interest is close to the mean density of the star, then

the circulation time scale is approximately the Eddington-Sweet time scale

τcirc ≈
GM2

LR

1

χ
≈ τKH

χ
, (15)

where χ ≡ ω2

2πGρc
≈ (ω/ωK)2 is a parameter describing the importance of rotation. For the

Sun, χ ≈ 10−5, and since τKH ≈ 107 yr, circulation is not important in the deep envelope.

However, near the surface, the time scale is shortened by a factor ≈ ρ/ρ̄, which can be tiny

in the outer envelope. Meridional circulation is therefore important there.


