
Simple Cosmological Models

Following Liddle’s Chapter 5, we will now explore some simple solutions to the Fried-

mann equation
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and the fluid equation
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A straw poll of cosmologists roughly a decade ago would have found most of them agreeing

that these equations describe the universe pretty well. However, since that time strong

evidence has emerged that the universe is accelerating in its expansion. This requires an

additional ingredient, called dark energy.

For now, though, let’s ignore that and go back to the blissful days before dark energy.

What is the left hand side in the Friedmann equation? Note that if we consider two objects

that are currently at a distance r from each other and are moving with the universal expan-

sion, then at any given time their separation is proportional to the scale factor: r ∝ a, hence

ṙ ∝ ȧ. Therefore, ṙ/r = ȧ/a. We note from the Friedmann equation that as a result, ṙ/r is

independent of r. This is just what Hubble’s Law tells us: the apparent recession speed is

proportional to the distance. We can define H ≡ ȧ/a, and H0 as the value right now. Note

that, indeed, the units of the Hubble “constant” are one over time: H0 = 72 km s−1 Mpc−1

(distance per time per distance). We therefore find an evolution equation for H = H(t):
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Let’s consider what this means. We know that ρ decreases as a increases. If k = 0 then as a

increases H therefore also decreases, so the expansion slows down with time. If k < 0 then

both terms are positive and both terms decrease as a decreases, so again H decreases with

increasing a and thus the expansion slows down. If k > 0 then since H > 0 now we know

the first term on the right hand side is larger than the second. However, for ρ ∝ 1/a3 (for

nonrelativistic matter) or ρ ∝ 1/a4 (for relativistic matter), the first term decreases more

rapidly with increasing a than the second. As a result, when k > 0 there will come a time

when H = 0, at which point the expansion has stopped and the universe will recontract.

Even in this case, though, since H > 0 now we expect the expansion to slow down in the

future. As a result, without something else happening, an accelerating expansion is not

expected.



Expansion and Redshift

What happens to a photon as the universe expands? The answer, in short, is that the

wavelength of the photon is proportional to the scale factor a (see Figure 1). As Liddle

shows, the straightforward way to motivate this is to consider two nearby galaxies, with

separation dr. Assuming that they both move with the universal expansion, this tells us

that their apparent relative speed is dv = (ȧ/a)dr. Light is emitted from one at wavelength

λe, and the Doppler shift is therefore given by

dλ/λe = dv/c . (4)

We also know that it takes a time dt = dr/c to travel the distance, so that
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Integrating gives λ ∝ a. You can then imagine a large number of such infinitesimal motions,

calculus-style, and conclude that λ ∝ a is valid for any distance traveled. The redshift z is

usually defined as
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where a photon emitted at wavelength λe is received at wavelength λr, and the global time

of emission and reception are te and tr, respectively. This definition implies z = 0 at the

present time. The redshift (or scale factor) is the most relevant single quantity to refer to

cosmological epochs. Unfortunately, the popular press likes to talk about times instead: “the

most distant galaxy was reported yesterday, having emitted the light we see 13 billion years

ago.” The problem is that quoting a time like that requires a specific cosmological model,

whereas the redshift is a statement of observational fact!

Solving the Equations

The fluid equation involves both the mass-energy density ρ and the pressure p. As a

result, to follow the evolution of the universe we need to know the relation p(ρ) (or more

generally when the temperature is important, p(ρ, T )). This is called the equation of state.

This comes up in many contexts in physics. For example, consider water. When it is water

vapor, a small change in pressure leads to a significant change in density. In contrast, when

it is liquid, a very large change in pressure is needed for even a small change in density.

This tells us that in the most general circumstances we need to worry about phase changes,

where a substance alters its character due to a change in density, temperature, or something

else. These can have importance in the early universe, where, for example, it is thought that

there was a shift from a very high-density high-temperature environment in which quarks



Fig. 1.— Cosmological redshift. As the universe expands, the wavelength of a

freely moving photon increases proportional to the scale factor. Therefore, the red-

shift is not really due to motion per se, but to the scale of the universe. From

http://www.pas.rochester.edu/∼afrank/A105/LectureXVI/FG26 007.JPG



and gluons were free, to the current lower-density lower-temperature environment in which

the quarks and gluons are bound in hadrons. Near such density-induced phase transitions,

matter tends to be more “squeezable” (less pressure change for a given density change), and

one cool consequence is that some people think that this phase of the universe was ripe for

the production of primordial black holes.

For our initial attempt at the equations, though, we will consider only two simplified

equations of state. One of them is relevant for nonrelativistic matter. For such matter, our

approximation is that p ≈ 0, which is really to say that p/c2 ¿ ρ. The other is completely

relativistic radiation. For this, we can derive the equation of state as follows.

Suppose that we have radiation with a number density n and an energy per photon of

E. The momentum is then P = E/c. Say that we put the radiation in a box, and ask about

the pressure that is exerted on a wall of area A. The pressure is the force per area, and

the force is the momentum per time. The momentum per time is the number of photons

per time, times the momentum per photon. The number of photons per time in a given

direction is nAv, where v = c/
√

3 if we assume the radiation is moving isotropically (to

see this, note that in each of three orthogonal directions v = c/
√

3, hence the total speed

is v2 = 3(c/
√

3)2 = c2). If the total energy of the photon is E then the momentum in a

given direction is, similarly, E/
√

3c. Then the force is nAc/
√

3 × E/
√

3c = nAE/3, and

the pressure is p = nE/3. The energy density is ρc2 = nE, so the equation of state is just

p = ρc2/3 or p = ρ/3 in units with c ≡ 1.

Starting, then, with nonrelativistic matter, the fluid equation is just

ρ̇ + 3
ȧ

a
ρ = 0 , ρ ∝ a−3 . (7)

This makes sense! A whole bunch of particles passively moving with the universe has a

number density that goes as a−3. Now suppose that k = 0 and that we set a ≡ 1 at the

present time, with ρ = ρ0 now. The Friedmann equation becomes
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Faced with an equation like this, a power law is a good guess, and indeed we find that

a(t) = (t/t0)
2/3 ; ρ(t) = ρ0(t0/t)

2 ; H ≡ ȧ/a = 2/(3t) . (9)

Note, therefore, that the current age of the universe can be obtained simply: t0 = 2/(3H0).

Doing this with the best value of H0 (72 km s−1 Mpc−1) gives about 9 Gyr (i.e., 9 billion

years). The oldest stars are estimated by various techniques to be about 12 Gyr old. That

is a problem that was starting to mount its head in the 1980s and 1990s.

With photons, we find ρ̇+4(ȧ/a)ρ = 0, meaning that ρ ∝ a−4. Again, this makes sense.

The number density of passively evolving photons goes as a−3, but the energy of each photon



is also redshifted as E ∝ a−1, giving a mass-energy density ∝ a−4. We then find

a(t) = (t/t0)
1/2 ; ρ(t) = ρ0(t0/t)

2 . (10)

This also implies that in a radiation-dominated epoch, H = 1/(2t). Note that the universe

expands more slowly than during the matter-dominated epoch. Pressure is a form of energy,

and like any energy it gravitates, so again one should be cautious not to think of pressure

as blowing up the universe.

The current universe is overwhelmingly matter-dominated, but has that always been

the case? The answer is no, as can be seen by ρrad ∝ a−4 but ρmatter ∝ a−3. There was a

stage, at a redshift of a few thousand and above, when radiation dominated. Therefore, the

early part of the expansion was driven by radiation, but more recently has been governed

by matter.

What About Curvature?

We obtained the previous solutions by assuming k = 0, but perhaps the universe doesn’t

work like that. What if k 6= 0?

Consider again the Friedmann equation:
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If k 6= 0 we might worry that the whole nature of the solutions changes. However, we can

obtain substantial insight by assuming that either the first term or the curvature term (the

one with k) dominates. Note that for matter ρ ∝ a−3 and for radiation ρ ∝ a−4, whereas

the curvature term is ∝ a−2. This tells us right away that when a is small enough, the first

term is more important. In such early phases, we really can ignore the curvature term for

our solutions, and since measurements indicate that the curvature term is currently small

(and possibly zero), the entire history of the universe thus far has had minimal influence

from curvature. What about later, though? If k < 0 then the universe will expand forever,

meaning that a will grow arbitrarily large. It is therefore inevitable that the curvature term

will dominate, at which stage the Friedmann equation becomes (ȧ/a)2 ∝ 1/a2, or ȧ ∝const,

meaning a ∝ t. The universe thus enters a coasting phase. If k > 0 then eventually the right

hand side becomes zero, the universe turns around, and recollapses.

We therefore conclude that unless k = 0, curvature will eventually dominate. Note,

though, that this does not apply if there is dark energy around!

Intuition Builder



Suppose the main component of the universe is some sort of field with an

equation of state p = wρ (with c ≡ 1). What are the requirements on w for

this field to be more important than curvature at very late times (i.e., large

a)?


