
The Age of the Universe

One somewhat low-profile but important test of cosmological models is that the age of

the universe implied by the models agrees with the age estimated using various methods.

Here we’ll talk about the age we get from models, and in the next lecture will discuss several

observational handles on the true age.

For a change of pace, and to give us some practice in evaluating complicated equations,

we will start with the equation for the lookback time provided by Hogg in astro-ph/9905116,

and see whether the units, limits, etc. make sense. The lookback time from now (z = 0)

back to redshift z means the time that would have elapsed on the wristwatch of an observer

moving with the Hubble flow between those redshifts. Hogg’s expression is:

tL =
1

H0

∫ z

0

dz′

(1 + z′)
√

Ω(1 + z′)3 + Ωk(1 + z′)2 + ΩΛ

. (1)

Here H0 is the current value of the Hubble parameter, and Ω, Ωk, and ΩΛ each indicate

their current (z = 0) values. Does this expression behave as it should? See Figure 1 for a

graphical representation.

As always, we check units first. Recall that the Hubble parameter has units of inverse

time, so the prefactor 1/H0 has units of time. The integral is dimensionless because the

redshift is, so indeed the units are correct.

Our second easy check is to note that tL must increase with increasing z. Since the

integrand is always positive, this is indeed the case.

Our third simple check is to note that smaller H0 should imply a larger time back to a

given redshift, because H0 = ȧ/a today. That’s another motivation for the 1/H0 factor in

front.

What’s the next easiest thing to do? Suppose we have a universe in which ΩΛ = 1 and

Ω = Ωk = 0. Then the lookback time is

tL =
1

H0

∫ z

0

dz′

(1 + z′)Ω
1/2

Λ

. (2)

Since ΩΛ = 1, this says that tL = ln(1 + z)/H0. But hold on! This says that if you go to

an arbitrarily large redshift z, you get to an arbitrarily large lookback time tL. This means

that either the universe is infinitely old, or it started at some finite scale factor and therefore

z cannot get arbitrarily large. Did Hogg make a mistake?

This requires careful examination on our part. First, note that if the current scale factor

is a0, this says that since 1+ z = a0/a, the solution is a = a0 exp(−H0tL). This is in fact the

solution we obtained previously, so it at least is consistent. The more important physical



Fig. 1.— Example of lookback time versus redshift. From

http://www.mhhe.com/physsci/astronomy/fix/student/images/24ex3.jpg



insight is to realize that because the matter contribution scales as (1 + z)3, at high enough

redshift it will dominate (since we know Ω > 0!), hence it is meaningless to continue the

exponential solution too far back into the past. In fact, this is a good general point to make.

Currently the best estimate is that Ω = 0.27, ΩΛ = 0.73, and |Ωk| < 0.03. At a redshift

such that 1 + z = 10 (around the time of formation of the first galaxies), |Ωk| < 0.003,

ΩΛ ≈ 0.0007, and Ω ≈ 0.997 − 1.003. Even when 1 + z = 2, we had |Ωk| < 0.01, ΩΛ = 0.09,

and Ω ≈ 0.9. This tells us that for z > 1, we are pretty well justified in using Ω ≈ 1 and

Ωk ≈ ΩΛ ≈ 0. Therefore, although the cosmological constant apparently plays a major role

now, it was negligible in the early universe, except during the extremely early inflationary

epoch (which might have physics related to current dark energy).

With that in mind, we can move on to the case in which Ω = 1 and Ωk = ΩΛ = 0. The

lookback time then becomes

tL =
1

H0

∫ z

0

dz′

(1 + z′)5/2
=

2

3H0

(1 + z′)
−3/2

∣

∣

∣

0

z
. (3)

Specifically, this means that the full age of the universe since the z → ∞ Big Bang is

T = 2/(3H0).

Let us compare this to the case of an empty universe, with Ω = ΩΛ = 0 and Ωk = 1. In

that case we have

tL =
1

H0

∫ z

0

dz′

(1 + z′)2
=

1

H0

(1 + z′)
−1

∣

∣

∣

0

z
. (4)

In this case, the full age of the universe since the Big Bang is T = 1/H0, so it is older than

in the case of a flat matter-dominated universe. Is this reasonable?

To evaluate this, think about what we are fixing in the comparison. In both cases, we

assume the same current value of the Hubble parameter, H0. In the Ω = 0 case, there

is nothing to slow this down, meaning that the universe has been expanding at the same

“speed” the entire time. In contrast, in the Ω = 1 case, gravity has been putting on the

brakes, meaning that the expansion was faster in the past. The average “speed” has thus

been greater, meaning that the time to get where we are now has been shorter. It therefore

does make sense. In a similar way, since the expansion rate is currently accelerating, it means

that in the recent past the expansion was slower than it would have been in an Ω = 1 or even

a Ωk = 1 universe. The accelerating expansion therefore has the somewhat counterintuitive

effect of implying a larger current age for the universe than we would infer otherwise. This

will turn out to be important in reconciling the model age with the age inferred from various

observables.

What is the overall scale of this age? We can define the Hubble time as

tH ≡ 1/H0 = 13.6 Gyr (5)



where as usual we used H0 = 72 km s−1 Mpc−1 and to be cool we have written this in terms

of Gyr= 109 yr units. This doesn’t seem too bad. Even for a Ω = 1 universe, this gives an

age of 9 Gyr. That is comfortably larger than the age of the Earth. However, it is not larger

than the ages of the oldest stars, which are thought to be more like 12 − 13 Gyr old. Since

it is generally accepted that the universe should be older than its oldest stars, this would

be a problem! This was another motivation, in the 1990s, for considering a cosmological

constant.

Age from the Friedmann Equation

We can also check Hogg’s expression by solving the Friedmann equation directly. First

consider Ω = 1 and Ωk = ΩΛ = 0. The equation becomes
(

ȧ

a

)2

=
8πG

3
ρ . (6)

We saw earlier that this implies a ∝ (t/t0)
2/3, meaning that H = (ȧ/a) = 2/(3t), and in

particular H0 = 2/(3t0) where t0 is the current age of the universe. Rearranging gives us the

result from Hogg’s formula, t0 = 2/(3H0). This check therefore works.

If instead Ωk = 1 and Ω = ΩΛ = 0, then
(

ȧ

a

)2

= −k/a2 . (7)

With k = −1, this means ȧ ∝const, so that a ∝ t. Therefore H = ȧ/a = 1/t, H0 = 1/t0,

and t0 = 1/H0, just as Hogg’s formula gives. Earlier we also showed that when ΩΛ = 1 and

Ω = Ωk = 0 the formula works as well, so in the simple limits everything is okay.

Other Limiting Cases

If you have a lot of time on your hands and/or access to a symbolic manipulation

program, you can demonstrate that there are exact solutions to a couple of slightly more

general cases. The most relevant one is the case with Ωk = 0 but current values of Ω = Ω0

and ΩΛ = 1 − Ω0 that can be anywhere between 0 and 1. Painful integration then yields

H0t0 =
2

3

1√
1 − Ω0

ln

[

1 +
√

1 − Ω0√
Ω0

]

. (8)

For practice, let us close up by applying our usual tests to see if this expression is reasonable.

First, we see that the units work out: H0 has units of inverse time, t0 has units of time,

and the right hand side is unitless.



Second, what if Ω0 = 1, where we expect t0 = 2/(3H0)? We see an apparent problem: we

have a 0/0 (the log is zero, as is the first square root). We therefore have to use L’Hopital’s

rule (somewhat complicated) or take a limit. Let Ω0 = 1 − ε, with ε ¿ 1. Then the log

becomes

ln

[

1 +
√

ε√
1 − ε

]

≈ ln(1 +
√

ε) ≈
√

ε (9)

and the square root becomes
√

ε. These cancel, leaving H0t0 = 2/3 as needed.

Third, what if Ω0 → 0, where we expect t0 → ∞ logarithmically? If in fact Ω0 = ε ¿ 1,

then to lowest order the equation gives

H0t0 =
2

3
ln(2/

√
ε) . (10)

Note that, for example, we write 1/
√

1 − Ω0 = 1/
√

1 − ε ≈ 1 to lowest order. This does

indeed go to infinity logarithmically, so it satisfies our expectations.

Intuition Builder

We have ignored radiation and relativistic matter throughout. How much

of a difference would it make to the estimated age if we included their effects?


