
Black Holes

We now embark on the study of black holes. Black holes are interesting for many

reasons: they are one of only three possible endpoints of stellar evolution (the others being

white dwarfs and neutron stars), they are the powerhouses of the most luminous things in the

universe (quasars and active galactic nuclei), and they are the simplest macroscopic objects

in the universe, with only two parameters important for their astrophysical properties. They

are also way cool. Their simplicity means that it is possible to study them in a way impossible

for any other object: with mathematical rigor. There was, for example, a flurry of activity

in the late 1960s and early 1970s about proving theorems related to black holes, something

which is mightily difficult to do with a star, for example! However, our main interest is in

astrophysics, and specifically in explaining observed phenomena. We will therefore describe

and use some of the derived results, but will not derive them (this would take overwhelmingly

too much time). People with a desire to see the mathematical details can consult “The

Mathematical Theory of Black Holes” by Chandrasekhar, or “Black Holes” by Novikov and

Frolov, both of which are in our library.

Let us start by defining “black hole”. A black hole is an object with an event horizon

instead of a material surface. Events inside that horizon cannot be seen by any external

observer. This is the fundamental property of black holes that distinguishes them from all

other objects. It should be noted that (as we’ll get to later) although there is compelling

evidence for the existence of black holes in the universe, never has the existence of the horizon

itself been demonstrated. An observation that unambiguously indicates the presence of a

horizon would be a major advance. From time to time there are press releases announcing

proofs of event horizons based on theoretical arguments, but so far these are unconvincing.

Inevitability of Collapse

One astrophysically relevant result to be stated is that once a star has compacted within

a certain radius, formation of a black hole is inevitable. A basic reason for this is that in

general relativity, all forms of energy gravitate. This includes pressure in particular. In a

normal star, the pressure makes a tiny contribution to the total mass-energy, but in a very

compact star the pressure is substantial. Normally, hydrostatic balance is produced by the

offset of gravity by a pressure gradient, but in this case squeezing the star only increases

the gravity (by increasing the pressure), so in it goes. The minimum stable radius for a

spherically symmetric star is not the Schwarzschild radius Rs = 2M as you might expect,

but is 9
8
Rs.

Nonsingularity of Rs

When looking at the Schwarzschild geometry in Schwarzschild coordinates, one has the



line element

ds2 = −(1 − 2M/r)dt2 + dr2/(1 − 2M/r) + r2(dθ2 + sin2 θdφ2) . (1)

This sure looks pathological at r = 2M . But you have to be careful. Perhaps it isn’t the

spacetime, but the coordinates that are at fault. For example, if you think about a sphere

in normal (r, θ, φ) spherical coordinates, you might think that the North pole (θ = 0) is

a real problem, because the dφ2 coefficient goes to zero. But we know that this is just

the coordinates; on a sphere, nothing at all is special about θ = 0, as you can see by just

redefining where your North pole is!

Now, r = 2M is a special place; it’s the location of the event horizon. But are things

really singular there? In particular, is the curvature of the spacetime there finite or infinite,

and would a freely falling observer feel finite or infinite tidal forces? For this, we can do a

hypothetical Newtonian calculation that gives the same general answers as we would get in

general relativity. Ask class: in Newtonian gravity, how would tidal acceleration depend

on M and r? All the components scale as ∼ M/r3, which is perfectly finite at r = 2M .

In fact, the acceleration ∼ M−2 at the horizon, meaning that for a large enough black hole

you could fall in without realizing it! You’d still be doomed, though. In contrast to this

coordinate singularity at r = 2M , there is a real singularity at r = 0. There the tidal stresses

are infinite, and anything that falls in gets munched regardless.

Ask class: What happens to the coordinates as you fall in to r < 2M? Looking at

the line element with r < 2M , you see that the sign of the dr2 term becomes negative,

and the sign of the dt2 term becomes positive. This means (as it turns out) that inside the

event horizon the radius becomes a timelike coordinate, and the time becomes a spacelike

coordinate. Specifically, that means that once inside 2M , you must go to smaller radii, just

as now you must go forward in time. You can’t even move a centimeter outwards once you’re

inside, and avoiding the singularity at r = 0 is just as impossible as avoiding Monday.

This is a major difference between the modern conception of black holes and the pre-GR

ideas sometimes linked to it. In 1783 John Michell realized that a star with 250 times the

radius of the Sun that had an average density equal to that of the Earth would be dark

according to Newton’s theory. That’s because the escape velocity would be the speed of

light, so he imagined light climbing up, slowing down, and falling back. He would, however,

have thought it possible to escape from such a star in a rocket. Not so in the modern

conception. Ask class: for fun, how would we compute the radius of an object of mass

M with an escape velocity equal to the speed of light, in the Newtonian limit? The escape

velocity is v2 = 2GM/r, so v2 = c2 means r = 2GM/c2, just the same as the Schwarzschild

radius!

No Hair Theorem



So far we’ve spent a lot of time with the Schwarzschild geometry, due to its simplicity.

But how relevant is it, really? Ask class: thinking about Newtonian gravity, what are some

factors other than the total mass that could influence the gravitational field outside a normal

star? Quadrupole terms, fluid motions, asymmetries, et cetera. What happens when collapse

into a black hole occurs? An amazing set of theorems proved in the early 1970’s shows that

the final result is a black hole that has only three qualities to it. These are mass, angular

momentum, and electric charge. Everything else (quadrupole terms, magnetic moments,

weak forces, etc.) decays away. This is a remarkable result that simplifies treatment of black

holes greatly. One heuristic way to think about this relates to what you would see if you

dropped a lightbulb into the black hole. As the lightbulb fell, light from it diminishes more

and more in apparent intensity. Ask class: suppose we have a lightbulb with rest-frame

specific intensity I0. How do we compute the specific intensity seen at infinity when the bulb

is at radius r, if the bulb falls radially from rest at infinity? The key here is to remember the

I ∝ ν4 law; tracking the frequency will allow computation of the specific intensity. There

are two components to the frequency shift. One is the ordinary Doppler shift as seen by a

local static observer, the other is the gravitational redshift from there to infinity. One must

then trace the rays to get the final intensity.

Very soon, nothing more is left; in fact, the luminosity seen by a distant observer goes

like

L ∝ exp

(

−
t

3
√

3M

)

. (2)

For a solar mass black hole the time constant is a few tens of microseconds. Therefore, in the

blink of an eye the black hole really does appear black. In a somewhat analogous fashion,

other properties of the infalling matter, such as magnetic field and lumpiness of the matter

distribution, decay away on a similar timescale. Only mass, angular momentum, and charge

are left.

It was discovered in 1963 that an exact spacetime exists for a black hole with just mass

and angular momentum (Kerr geometry), and in 1965 a solution including charge was found

(Kerr-Newman geometry). The most common coordinates used to express this spacetime

are generalizations of Schwarzschild coordinates called Boyer-Lindquist coordinates, and for

the record the metric line element is then

ds2 = −(∆/ρ2)[dt− a sin2 θ dφ]2 + (sin2 θ/ρ2)[(r2 + a2)dφ− a dt]2 + (ρ2/∆)dr2 + ρ2 dθ2 . (3)

There are several definitions here. The parameter a = J/M describes the angular momen-

tum, and it has dimensions of mass. ∆ = r2 − 2Mr + a2 +Q2, where Q is the electric charge

(in cgs units Q2 has the units of erg-cm, which can then be converted to grams in the usual

geometrized units way). Finally, ρ2 = r2 + a2 cos2 θ.

The most important new feature of this geometry, compared to Schwarzschild, is the



dφdt terms. These indicate a relation between time and azimuthal angle, and correspond to

frame-dragging: spacetime is “twisted” in the direction of rotation of the black hole.

This geometry has a horizon (and therefore descibes a black hole) only if Q2 +a2 ≤ M2.

If equality holds, this is called an extremal black hole. If this condition is violated, centrifugal

acceleration or electrostatic repulsion will halt the collapse. You cannot, however, spin up a

black hole or feed charge to it so that it loses its horizon.

Let’s see if we even need the charge term, astrophysically. Ask class: how should we

determine whether Q can ever be gravitationally significant? Suppose that Q2 = M2, the

maximum possible. Converting M 2 into erg-cm units means Q2 = (Mc2)(GM/c2) = GM 2.

Suppose we compare the electrical and gravitational forces on a particle of mass m and

charge q at a distance r À M , so the Newtonian force law is accurate. The electrical

force is qQ/r and the gravitational force is GMm/r, so the ratio is fe/fg = qQ/(GMm) =

qG1/2M/(GMm) = q/(G1/2m). For example, for a proton fe/fg ≈ 1018 and for an electron

fe/fg ≈ 2 × 1021. This shows that (as always!) the electromagnetic force is overwhelmingly

stronger than gravity if there is a lot of unbalanced charge. The result is that if Q is anything

remotely significant gravitationally, the black hole will sweep up every stray charge within

parsecs until it is almost electrically neutral. That’s why we can ignore the charge, and

consider just the mass and angular momentum when thinking about the spacetime. With

angular momentum but no charge this is called the Kerr spacetime. It is also common to

use the dimensionless quantity j = a/M instead of a.

Properties of Kerr Spacetime

The Kerr spacetime is a lot more complicated than the Schwarzschild spacetime, but

because it can be written in closed form it is still simple enough for fairly rigorous math-

ematical analysis. First of all, though, let’s see what quantities are conserved in the Kerr

spacetime. Ask class: will the squared four-velocity change? No, this is completely general,

so we always have u2 = −1 for massive particles, u2 = 0 for photons. What else, though?

Ask class: is the geometry spherically symmetric? No, because there is a preferred axis

(the axis of rotation). Looking at the metric coefficients, Ask class what variables never

appear? t and φ, so this is a stationary and axisymmetric spacetime. Ask class make a

guess about which two conserved quantities result from these symmetries. Energy and angu-

lar momentum, respectively. There is also a fourth quantity, called Carter’s fourth constant

of motion, that is conserved, but it is more complicated than is worth writing down.

As said before, the major new component to this spacetime compared to Schwarzschild

is frame-dragging, more as one gets closer to the hole. One of many bizarre consequences

is that if you were to drop a particle from infinity radially at the hole, then as it got closer



Fig. 1.— Features of a rotating (Kerr) black hole. It has a horizon and a singularity, just like a

nonrotating (Schwarzschild) black hole. However, it also has a region outside the horizon called the

ergosphere, in which as seen at infinity everything must rotate in the same direction as the hole.

From http://www.zamandayolculuk.com/cetinbal/KO/KerrBlackHoleFeatu.gif



it would acquire a nonzero angular velocity (but still have zero angular momentum!). The

angular velocity of a zero angular momentum particle, which can be thought of as the angular

velocity of spacetime, is

ω =
2Mar

(r2 + a2)2 − a2∆ sin2 θ
. (4)

For almost all applications of interest, the r4 term dwarfs the others and ω ≈ 2Ma/r3 =

2jM2/r3.

Frame-dragging has many implications. One is that, near enough to the hole, a particle

must rotate in the same direction as the hole. This is even true outside the horizon, so there

is a region, called the ergosphere, in which no static observers can exist; nonetheless, they

could escape from that region, so it isn’t like the horizon. The radius of the ergosphere

is rergo = M + (M 2 − a2 cos2 θ)1/2. In addition, the black hole itself shrinks; the radius

of the horizon is r = M +
√

M2 − a2, so for an extremally rotating black hole (a = M),

r = M . The radius of the innermost stable circular orbit shrinks for prograde orbits (to a

minimum of rISCO = M for a = M) and increases for retrograde orbits (to a maximum of

rISCO = 9 M for a = M). That means that if gas spirals in to the hole on prograde orbits,

the energy emitted and hence the accretion efficiency increases with increasing spin (from

5.7% for a = 0 to 42% for a = M , or 40% if you discount energy that goes down the hole).

Yet another consequence is that a particle in a circular orbit that is tilted with respect to

the spin plane will precess in its orbit, at the rate ω. This means that a nonaxisymmetric

warp in an accretion disk has a tough time surviving unless it is confined to a small radial

range, because the strong dependence of ω on r means that there would be a lot of shear

otherwise. Also, a gyroscope with an axis tilted from the spin axis will precess at ω. This is

an effect which Gravity Probe B will try to detect, and that some people think has already

been seen from some neutron star and black hole sources (although I’m highly skeptical).

Finally, Kepler’s Third Law (angular velocity of a particle in a circular orbit at r) takes the

simple form

Ω = ±
M1/2

r3/2 ± aM1/2
(5)

where + is for prograde and − is for retrograde orbits.

Black Hole Thermodynamics

There is a remarkable black hole analogy with thermodynamics. If one computes the

area of the horizon, it is

A = 8πM
[

M + (M 2 − a2)1/2
]

. (6)

For Schwarzchild, a = 0, the area is A = 16πM 2 as expected. Hawking proved that in any

interaction of a black hole or between black holes, the sum of the areas can never decrease.

This leads one to a possible computation of the maximum amount of energy that can be



radiated in a collision between black holes. For example, if two Schwarzschild black holes

of mass M hit head-on, then you know that 16πM 2
tot ≥ 32πM 2, so Mtot > M/

√
2 and no

more than 29% of the total mass-energy can be radiated away. The best case would be two

extremal Kerr black holes of the same mass and opposite angular momentum, for which the

theoretical maximum is 50%. However, the actual amount radiated is much less than this,

and must be computed numerically. For head-on Schwarzschild the efficiency is more like

0.1%.

The area theorem is awfully reminiscent of the second law of thermodynamics. But

this would require that black holes have finite temperature, so that they radiate. When

Bekenstein suggested the thermodynamic analogy, most people (including Hawking) were

dubious, but then Hawking showed that black holes do radiate! This happens because virtual

pairs of particles and antiparticles can be made real by the tidal acceleration near the event

horizon, and on occasion one escapes while the other is sucked in; the effect is that the

black hole “radiates” even though nothing escapes from inside the event horizon. This is an

astrophysically unimportant effect because the effective temperature is T ≈ 10−7 K(M/M¯),

so a 10 M¯ black hole would last ∼ 1070 years. We’ll never see a black hole radiate unless

tiny ones (mass of a mountain) were formed in the early universe. Nonetheless, Hawking

radiation does have importance in other ways. For example, a few years ago great excitement

was produced when it was shown that the rate and spectrum of Hawking radiation from

special black holes (Schwarzschild and extremally rotating) could be reproduced in M-theory,

which is the best current candidate for the theory of everything. Hawking radiation also

brings up interesting semi-philosophical questions; for example, particles and antiparticles

have an equal likelihood of being emitted, whereas the star that formed the black hole and

almost anything that fell in it were formed of particles. Thus, lepton and baryon number

conservation seem to be violated by Hawking radiation.

Intuition Builder

Suppose you had a large number of photons trapped in a cavity (e.g., a

spherical mirror). If you slowly reduced the size of the cavity, could you cause

the photons to collapse into a black hole?


