
Binary Sources of Gravitational Radiation

We now turn our attention to binary systems. These obviously have a large and varying

quadrupole moment, and have the additional advantage that we actually know that gravitational

radiation is emitted from them in the expected quantities (based on observations of double neutron

star binaries). The characteristics of the gravitational waves from binaries, and what we could

learn from them, depend on the nature of the objects in those binaries. We will therefore start

with some general concepts and then discuss individual types of binaries.

First, let’s get an idea of the frequency range available for a given type of binary. There

is obviously no practical lower frequency limit (just increase the semimajor axis as much as you

want), but there is a strict upper limit. The two objects in the binary clearly won’t produce a

signal higher than the frequency at which they touch. If we consider an object of mass M and

radius R, the orbital frequency at its surface is ∼
√

GM/R3. Noting that M/R3 ∼ ρ, the density,

we can say that the maximum frequency involving an object of density ρ is fmax ∼ (Gρ)1/2. This

is actually more general than just orbital frequencies. For example, a gravitationally bound object

can’t rotate faster than that, because it would fly apart. In addition, you can convince yourself

that the frequency of a sound wave through the object can’t be greater than ∼ (Gρ)1/2. Therefore,

this is a general upper bound on dynamical frequencies.

This tells us, therefore, that binaries involving main sequence stars can’t have frequencies

greater than ∼ 10−3 − 10−6 Hz, depending on mass, that binaries involving white dwarfs can’t

have frequencies greater than ∼ 0.1 − 10 Hz, also depending on mass, that for neutron stars the

upper limit is ∼ 1000− 2000 Hz, and that for black holes the limit depends inversely on mass (and

also spin and orientation of the binary). In particular, for black holes the maximum imaginable

frequency is on the order of 104(M¯/M) Hz at the event horizon, but in reality the orbit becomes

unstable at lower frequencies (more on that later).

Now suppose that the binary is well-separated, so that the components can be treated as

points and we only need take the lowest order contributions to gravitational radiation. Temporarily

restricting our attention to circular binaries, how will their frequency and amplitude evolve with

time?

Let the masses be m1 and m2, and the orbital separation be R. We argued in the previous

lecture that the amplitude a distance r À R from this source is h ∼ (µ/r)(M/R), where M ≡

m1 + m2 is the total mass and µ ≡ m1m2/M is the reduced mass. We can rewrite the amplitude

using f ∼ (M/R3)1/2, to read

h ∼ µM2/3f2/3/r

∼ M
5/3

ch f2/3/r
(1)

where Mch is the “chirp mass”, defined by M
5/3

ch = µM2/3. The chirp mass is named that because

it is this combination of µ and M that determines how fast the binary sweeps, or chirps, through

a frequency band. When the constants are put in, the dimensionless gravitational wave strain
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amplitude (i.e., the fractional amount by which a separation changes as a wave goes by) measured

a distance r from a circular binary of masses M and m with a binary orbital frequency fbin is

(Schutz 1997)

h = 2(4π)1/3 G5/3

c4
f

2/3

GWM
5/3

ch

1

r
, (2)

where fGW is the gravitational wave frequency. Redshifts have not been included in this formula.

The luminosity in gravitational radiation is then

L ∼ 4πr2f2h2

∼ M
10/3

ch f10/3

∼ µ2M3/R5 .

(3)

The total energy of a circular binary of radius R is Etot = −GµM/(2R), so we have

dE/dt ∼ µ2M3/R5

µM/(2R2)(dR/dt) ∼ µ2M3/R5

dR/dt ∼ µM2/R3 .

(4)

What if the binary orbit is eccentric? The formulae are then more complicated, because one

must then average properly over the orbit. This was done first to lowest order by Peters and

Matthews (1963) and Peters (1964), by calculating the energy and angular momentum radiated

at lowest (quadrupolar) order, and determining the change in orbital elements that would occur

if the binary completed a full Keplerian ellipse in its orbit. That is, they assumed that to lowest

order, they could have the binary move as if it experienced only Newtonian gravity, and integrate

the losses along that path.

Before quoting the results, we can understand one qualitative aspect of the radiation when the

orbits are elliptical. From our derivation for circular orbits, we see that the radiation is emitted

much more strongly when the separation is small, because L ∼ R−5. Consider what this would

mean for a very eccentric orbit (1 − e) ¿ 1. Most of the radiation would be emitted at pericenter,

hence this would have the character of an impulsive force. With such a force, the orbit will

return to where the impulse was imparted. That means that the pericenter distance would remain

roughly constant, while the energy losses decreased the apocenter distance. As a consequence, the

eccentricity decreases. In general, gravitational radiation will decrease the eccentricity of an orbit.

The Peters formulae bear this out. If the orbit has semimajor axis a and eccentricity e, their

lowest-order rates of change are

〈
da

dt
〉 = −

64

5

G3µM2

c5a3(1 − e2)7/2

(

1 +
73

24
e2 +

37

96
e4

)

(5)

and

〈
de

dt
〉 = −

304

15
e

G3µM2

c5a4(1 − e2)5/2

(

1 +
121

304
e2

)

(6)
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where the angle brackets indicate an average over an orbit. One can show that these rates imply

that the quantity

ae−12/19(1 − e2)

(

1 +
121

304
e2

)−870/2299

(7)

is constant throughout the inspiral.

Do we have evidence that these formulae actually work? Yes! Nature has been kind enough

to provide us with the perfect test sources: binary neutron stars. Several such systems are known,

all of which have binary separations orders of magnitude greater than the size of a neutron star, so

the lowest order formulae should work. Indeed, the da/dt predictions have been verified to better

than 0.1% in a few cases. The de/dt predictions will be much tougher to verify, though. The

reason for the difference is that de/dt has to be measured by determining the eccentricity orbit

by orbit, whereas da/dt has a manifestation in the total phase of the binary, so it accumulates

quadratically with time. These systems provide really spectacular verification of general relativity

in weak gravity. In particular, in late 2003 a double pulsar system was detected, that in addition

has the shortest expected time to merger of any known system (only about 80 million years).

Having two pulsars means that extra quantities can be measured (such as the relative motion,

which gives us the mass ratio), and in fact the system is now dramatically overconstrained (more

things measured than there are parameters in the theory). The tests of GR by observations of

binary neutron star systems deservedly resulted in the 1993 Nobel Prize in physics going to Hulse

and Taylor, who discovered the first such binary.

We are therefore quite confident that, at least in weak gravity, gravitational radiation exists

as advertised. What happens in strong gravity?

When two masses are close enough to each other, the Peters formulae do not quite describe

their motion. Instead, there are additional terms corresponding to higher order moments of the

mass and current distributions: the octupole, hexadecapole, and so on. This is often expressed

in terms of equations of motion that include the Newtonian acceleration and a series of “post-

Newtonian” (PN) terms. The order of a term is labeled by the number of factors of M/r by which

it differs from Newtonian: for example, the 1PN term is proportional to M/r times the Newtonian

acceleration. Since v2 ∼ M/r in a binary orbit, there can also be half-power terms. The first

several corrections are at the 1PN, 2PN, 2.5PN (this is where gravitational radiation losses first

enter), 3PN, and 3.5 PN orders.

The equations of motion have been fully, rigorously established up to 3PN order, but the algebra

is daunting and serious technical challenges exist that make it difficult to determine unambiguously

the coefficients in each succeeding set of terms. We note that, fortunately, tidal effects only enter at

the 5PN order, which one can justify by realizing that tidal couples have a 1/r6 energy dependence,

or five powers of r greater than the Newtonian potential. Therefore, for many purposes, tidal effects

can be neglected. The post-Newtonian approach is useful, but problematic because succeeding

terms are not much smaller than the terms before them. Another way to put this is that the



– 4 –

Newtonian acceleration is overwhelmingly dominant for an extremely wide range of separations

(out to infinity, in fact), but the range in which the 1PN term is necessary but the 2PN term is

negligible is small, and this becomes even more true for the higher order terms. One can therefore

often make good progress by taking the lowest-order term, and since the 2.5PN term is the lowest-

order that involves energy and angular momentum loss, one can use the Newtonian plus 2.5PN

terms. However, more terms turn out to be necessary to get sufficiently accurate waveforms for

analysis of future gravitational wave data streams.

Various clever attempts have been made to recast the expansions into forms that converge

faster than Taylor series. For example, a path adopted by Damour and Buonanno is to pursue

equivalent one-body spacetimes in which an effective test particle moves, and to then graft on the

effects of gravitational radiation losses. They also use Padé resummation, in which the terms are

ratios of polynomials, in the hopes that this can more naturally model the singularity of black

hole spacetimes. Recently, using calibration from numerical relativity runs, this method has been

adjusted so that it gives tremendous precision in gravitational radiation waveforms (e.g., less than

0.05 radians difference between analytic and numerical waveforms over 30 cycles of an equal-mass

non-rotating binary). One can hope that similar precision is possible for unequal-mass, rotating,

arbitrarily oriented holes.

One interesting effect that emerges from the higher-order studies of binary inspirals is that

gravitational radiation carries away net linear momentum, hence the center of mass of the system

moves in an ever-widening spiral. We can understand this as follows (following an idea of Alan

Wiseman). In an unequal-mass binary, the lower-mass object moves faster. As the speed in orbit

becomes relativistic, the gravitational radiation from each object becomes beamed, with the lower-

mass object producing more beaming because it moves faster. Therefore, at any given instant, there

is a net kick against the direction of motion of the lower-mass object. If the binary were forced

to move in a perfect circle, the center of mass of the system would simply go in a circle as well.

However, because in reality the orbit is a tight and diminishing spiral, the recoil becomes stronger

with time and the center of mass moves in an expanding spiral. Note that by symmetry, equal-mass

nonspinning black holes can never produce a linear momentum kick, and that if the mass ratio is

gigantic the fractional energy release is small and therefore so is the kick. For nonspinning holes,

the optimal ratio for a kick is about 2.6.

This process is potentially important astrophysically because if the final merged remnant of

a black hole inspiral is moving very rapidly, it could be kicked out of its host stellar system, with

possibly interesting implications for supermassive black holes and hierarchical merging. There

have therefore been a number of calculations of the expected kick. It has turned out that these

are very challenging. The primary reason is that most of the action is near the end, when the

black holes are close to each other and simple approximations to the orbit are inaccurate. Analytic

calculations (recent examples include Favata, Hughes, and Holz 2004; Blanchet, Qusailah, and Will

2005; Damour and Gopakumar 2006), suggest that the kick due to inspiral from infinity to the
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Fig. 1.— Net recoil speed as a function of time, for various initial separations of two spinning black

holes. These realizations are from the group at the Albert Einstein Institute in Potsdam, Germany.

From http://numrel.aei.mpg.de/Images/vkick vs time.jpg
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ISCO is minimal, but that the final plunge could produce interesting speeds. In the last three years

there has been tremendous progress in numerical relativity, and at this stage one can say that the

kick can be estimated with decent accuracy for any orientation, mass ratio, and spin magnitude.

The real stunner turned out to be that with spin axes in the orbital plane, one can end up with

kicks of nearly 4000 km s−1!! That’s larger than the escape speed from any galaxy.

A Maryland crew (Bogdanović, Reynolds, and Miller 2007) suggests that in mergers of gas-rich

galaxies, torques from the gas can align the spins with each other and with the orbital axis. If so,

this reduces kicks to below 200 km s−1 and means that the remnant stays in any decent galaxy.

As late-breaking news, though, we should mention that Komossa et al. (arXiv:0804.4585) report

possible evidence for a quasar that has recoiled with a speed of at least 2650 km s−1 from its host

galaxy. If this is confirmed by future observations, we’ll have to again think about why all closely

observed big galaxies that have undergone major mergers do still have massive black holes.

Generically, if two black holes coalesce, how does it happen? In this field it is standard (and

reasonable) to divide the whole process up into three stages. The first stage is inspiral, which

follows the binary from large separations to when the binary has reached the stage of dynamical

instability. That is, inspiral is roughly where the binary is outside the innermost stable circular

orbit, so the motion is mostly azimuthal. Inside the ISCO, the motion becomes a plunge, and this

happens on a dynamical time scale. As the event horizons disturb each other and finally overlap,

the spacetime becomes extremely complicated and must be treated numerically. This is called the

merger phase.

Ultimately, of course, the “no hair” theorem guarantees that the system must settle into a

Kerr spacetime. It does this by radiating away its bumpiness as a set of quasinormal modes. The

lowest-order, and longest-lived, of the modes is the l = 2, m = 2 mode. When all but this mode

have essentially died away, the system has entered the period of ringdown. With only a single

mode left, the ringdown phase can be treated numerically. The result is that the frequency fqnr of

the gravitational radiation, as well as the quality factor Q ≡ πfqnrτ (where τ is the characteristic

duration of the mode; this measures how many cycles the ringing lasts) depend on the effective

spin j ≡ cJ/GM2 of the final black hole (sometimes â is used instead of j). Echeverria (1989) gives

fitting formulae valid to ∼ 5%:

fqnr ≈ [1 − 0.63(1 − j)0.3](2πM)−1

Q ≈ 2(1 − j)−0.45 .
(8)

Thus more rapidly spinning remnants have higher frequencies and last for more cycles. This could

allow identification of the spin based on the character of the ringdown.

We can make rough estimates of the energy released in each phase as a function of the reduced

mass µ and total mass M of the system. Since the inspiral phase goes from infinity to the ISCO, the

energy released is simply µ times the specific binding energy at the ISCO, so Einspiral ∼ µ. What

about the merger and ringdown phases? We know that the strain amplitude is h ∼ (µ/r)(M/R),

where r is the distance to the observer and R is the dimension of the system. For the merger
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and ringdown phases, R ∼ M , so h ∼ µ/r. We also know that the luminosity is L ∼ r2h2f2,

so L ∼ µ2f2, and if the phase lasts a time τ then the total energy released is E ∼ µ2f2τ . But

the characteristic frequency is f ∼ 1/M and the characteristic time is τ ∼ M , so we have finally

E ∼ µ2/M , or a factor ∼ µ/M times the energy released in the inspiral. The exact values for

a particular mass ratio are somewhat in dispute, but for an equal-mass nonspinning black hole

binary, Einspiral ∼ 0.06M and Emerger and Eringdown are probably ∼ 0.01M . Note that for highly

unequal mass binaries (µ ¿ M), the inspiral produces much greater total energy than the merger

or ringdown. This is one reason why analyses of extreme mass ratio inspirals have ignored the

merger and ringdown phases. In the next class we will discuss such mergers, and the astrophysical

context of massive black hole coalescence.

Intuition Builder

If you isolated the Sun-Earth system from any perturbing influences

(other planets, the Galaxy, the Sun’s evolution, etc.), how long would it

take the Earth to spiral into the Sun via gravitational radiation?


