
Stochastic Backgrounds

For our last lecture, we will focus on stochastic backgrounds, with an emphasis on primordial

gravitational waves. To get a handle on these issues, we need to think in terms of broad bands of

frequency with many sources, rather than the signal produced by an individual source. For this

purpose, it is useful to reproduce a discussion due to Sterl Phinney about the relation between

gravitational wave spectral density from a class of sources, and the total energy released in those

sources over their lifetimes.

Before moving into the details, we can state the general idea very simply. Suppose we have a

closed box, and sources in the box that emit some total average energy 〈E〉 during their lifetimes.

If the number density of the sources is n, then the energy density in the box is n〈E〉. If the energy

emitted between frequencies f and f + df is (dE/df)df , and if there is no redshifting, then the

total energy density between f and f + df is n(dE/df)df . Expansion of the universe changes these

expressions, as we will now explore.

Following Phinney’s derivation, let the frequency of a gravitational wave in the rest frame of

a source be fr, and the observed frequency be f = fr/(1 + z). Let the emitted energy between fr

and fr + dfr be (dE/dfr)dfr. This is the total energy emitted over the lifetime of the source, in all

directions, and is measured in the rest frame of the source. Let us also define ΩGW(f) as follows.

Suppose that dρGW(f)c2/df is the present-day energy density in gravitational waves of frequencies

between f and f + df . Let ρcc
2 be the mass-energy density needed to close the universe. Then

ΩGW ≡
1

ρcc2

dρGW(f)c2

d ln f
. (1)

That is, ΩGW is the ratio of the present-day energy density in gravitational waves in a logarithmic

interval around f to the critical energy density. The current-day critical density is ρc = 3H2
0
/(8πG),

so the total current energy density in gravitational waves is

EGW =

∫
∞

0

ρcc
2ΩGWdf/f =

∫
∞

0

π

4

c2

G
f2h2

c(f)df/f , (2)

where hc is the characteristic amplitude over a logarithmic frequency interval around f , and is

related to the one-sided spectral noise density Sh,1(f) by h2
c(f) = fSh,1(f).

We want to relate this to the energy radiated throughout the history of the universe, including

the effects of redshifts. Suppose that the number of events between z and z +dz per unit comoving

volume is N(z)dz. Note that “comoving volume” is the volume that the region in question occupies

now; at the time of emission, the volume was smaller. The present day energy density can then be

expressed with integrals over the frequency and redshift:

EGW =
∫
∞

0

∫
∞

0
N(z)(1 + z)−1fr(dEGW/dfr)(dfr/fr)dz

=
∫
∞

0

∫
∞

0
N(z)(1 + z)−1fr(dEGW/dfr)dz(df/f) .

(3)
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We now have two expressions for the same quantity, and can equate them at each frequency:

ρcc
2ΩGW(f) =

π

4

c2

G
f2h2

c(f) =

∫
∞

0

N(z)(1 + z)−1fr(dEGW/dfr)dz . (4)

This relates the energy density to the current number density of event remnants, and the energy

they released over their lifetimes.

This is an extremely general result. It is independent of the cosmology. It is also unaffected

by beaming as long as the beams are randomly oriented. If there are multiple types of sources,

just add their contributions. This theorem allows us to compute the background due to any given

class of sources, at any given frequency. It turns out that the current-day energy density at a given

frequency is not even all that sensitive to N(z), assuming that the sources are not concentrated

too much at one redshift.

A background due to processes in the early universe (say, before the production of the cos-

mic microwave background) would be very exciting because it would contain information that is

unavailable otherwise. In principle, one could see gravitational waves from very early in the uni-

verse, because gravitons have a very small interaction cross section. We need to state clearly that,

even by the standards of gravitational wave astronomy, these processes are highly speculative. One

consequence of this is that although it would be extremely exciting to detect a background of early-

universe gravitational radiation, a nondetection would not be surprising. The rest of this lecture is

based strongly on notes from Alessandra Buonanno (gr-qc/0303085).

Before examining specific possibilities, let’s establish a scaling. What can ΩGW(f) depend on?

We know that ΩGW(f) itself is dimensionless. From its definition, it has a factor of H−2

0
(from

1/ρc) and must also be proportional to Sh,1. It could be proportional to some power of f as well.

You might think that a factor of G could also be involved, but since ΩGW(f) is dimensionless and

all the other factors have units of s or s−1, there cannot be any powers of G. The only combination

that works is

ΩGW(f) ∝ H−2

0
f3Sh,1(f) . (5)

The result of this is that unless in some frequency range d ln ΩGW(f)/d ln f > 3, the spectral density

decreases with increasing frequency. As a result, for most realistic sources of background, it will

be easier to detect the background at lower frequencies if instrumental sensitivity is independent

of frequency.

As our first contestant for a gravitational wave background, let us consider simply a thermal

background of gravitons. It is possible that in the very early universe (roughly the Planck time,

or about 10−43 s after the Big Bang!) gravitons were in thermal equilibrium with the rest of the

matter and energy. At some point not long after the Planck time, the gravitons decoupled and

streamed freely. What would their temperature be now? As a guide, we can consider the cosmic

microwave background, at a temperature of 2.7 K. Would the graviton background have a larger or

smaller temperature? It would have to be smaller. The way to see this is to realize that at any given

epoch, the energy is shared among all the relativistic species that are coupled tightly. At the time
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of the neutrino background, for example, in addition to photons there were neutrinos, electrons,

and positrons. As a result, the temperature that we see now would be less, a bit under 2 K. Since

neutrino scattering cross sections scale as the temperature squared, the probability of scattering is

some 20 orders of magnitude less than the normal ∼MeV neutrinos detected with enormous pools

of water or other substances. No chance.

For gravitons, at the Planck time the energy would be shared with the entire zoo of particles in

the Standard Model, leading to a present-day temperature of a bit under 1 K. The frequency of the

photons would therefore be ν ∼ kT/h, or in the ∼ 1010 Hz range. No current or planned detectors

could see this. The whole line of argument leading to this background is in any case dubious,

because Planck-era physics is unknown and gravitons might never have been strongly coupled to

other particles.

What about generic possibilities from later in the universe? Suppose that a graviton of fre-

quency f∗ is emitted when the scale factor of the universe is a∗. Then we observe the frequency at

f = f∗(a∗/a0), where a0 is the current scale factor. This gives

f ≈ 10−13f∗(1 GeV/kT∗) , (6)

modulo a factor of order unity related to the number of relativistic degrees of freedom at time

t∗. Here T∗ is the temperature. What value of f∗ should we take? Based on general causality

considerations we know that the lowest frequency possible is the Hubble constant H∗ at that

epoch. The frequency could be higher, though, so we’ll take f∗ = H∗/ε, with ε < 1. In the

radiation-dominated epoch of the universe (valid for z > 104, which will be true for almost all

processes we consider), H∗ ∼ T 2
∗
, so f ∼ T∗, or with the constants put in,

f ≈ 10−7 Hzε−1(kT∗/1 GeV) . (7)

If ε is not too much less than unity, this tells us the energy scale probed at a given present-day

gravitational wave frequency. For example, LISA (at 10−4 Hz) would probe the TeV scale and

ground-based detectors would probe the EeV scale.

What limits are there to the overall strength of the gravitational wave background? One

comes from Big Bang nucleosynthesis (BBN). This is the very successful model that relates the

overall density of baryons in the universe to the abundances of light elements. The idea is that

in the first few minutes of the universe, after the temperature had dropped below the level when

photodisintegration of nuclei was common but before free neutrons decayed, protons and neutrons

could merge to form heavier elements. George Gamow, who originally proposed this, had hoped

that this process would explain all the elements in the universe, but the lack of stable elements

at mass 5 and mass 8 prevents this. Instead, just the light elements are formed. These include

hydrogen, deuterium, helium-3 and helium-4, and trace amounts of lithium and beryllium. The

relative abundances of each depend only on the overall entropy of the universe (i.e., ratio of photons

to baryons) and the number density of baryons. Measurements of primordial abundances of the light
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elements are in excellent agreement with the baryon fraction Ωb ≈ 0.04 measured independently

from the microwave background.

If the current energy density of gravitational waves were too high, this would mess up BBN.

The constraint is ∫ f=∞

f=0

d ln fh2
0ΩGW(f) < 5 × 10−6 , (8)

where h0 ≡ H0/100km s−1Mpc−1. In principle you could imagine that ΩGW(f) À 10−5 in some

narrow frequency interval, but this seems unlikely.

Observations of the cosmic microwave background (CMB) also limit the GW background.

This is because gravitational waves would produce fluctuations in the CMB, hence the measured

fluctuations give an upper limit at low frequencies:

ΩGW(f) < 7 × 10−11(H0/f)2 , H0 = 3 × 10−18 Hz < f < 10−16 Hz . (9)

Yet another constraint comes from pulsar timing (see Figure 1 for the sky positions of pulsars

in the current array). The tremendous stability of millisecond pulsars means that we would know

if a wave passed between us and the pulsar, because the signal would vary. Roughly eight years of

timing has led to the bound

ΩGW(f) < 5 × 10−9(f/fPSR)2 , f > fPSR ≡ 4.4 × 10−9 Hz . (10)

What are some specific mechanisms by which gravitons can be generated in the early universe,

after the Planck time? The two primary mechanisms that have been explored are production during

inflation, and production during a phase transition.

Various models of inflation have been discussed, but one that is considered relatively realistic

is slow-roll inflation. In this model, the universe had a scalar field that, at the beginning of the

inflationary period, was not at its minimum. The field value “rolls” towards the minimum and as

it does so it drives rapid expansion of the universe. The rolling process means that the Hubble

parameter is not constant during inflation. Therefore, fluctuations that leave the Hubble volume

during inflation and re-enter later have a tilt with respect to other fluctuations. The net result of

calculations is that if standard inflation is correct then, unfortunately, there is no hope of detecting a

gravitational wave background, because the amplitude is orders of magnitude below what current or

planned detectors could achieve. Variants of or substitutes for standard inflation have been proposed

that might lead to detectable gravitational radiation, including bouncing-universe scenarios and

braneworld ideas, but whether these encounter reality at any point is anyone’s guess!

If phase transitions in the early universe (e.g., from a quark-gluon plasma to baryonic matter)

are first-order, then by definition some variables are discontinuous at the transition. If the transition

occurs in localized regions (“bubbles”) in space, collisions between the bubbles could produce
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Fig. 1.— Directions to pulsars in current timing arrays for use in searches for low-frequency gravita-

tional radiation. From http://www.berkeley.edu/news/media/releases/2002/01/images/arrayb.gif
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gravitational radiation. In addition, turbulent magnetic fields produced by the fluid motion could

generate secondary gravitational radiation, but these are weaker. The most optimistic estimates

put the contribution at h2
0
ΩGW ∼ 10−10, peaking in the millihertz range. This would be detectable

with LISA, but don’t bet on it.

A more recent suggestion has been that gravitational radiation could be produced by cosmic

strings. Cosmic strings, if they exist, are one-dimensional topological defects. Assuming a network

of cosmic strings exists, it would have strings of all sizes and therefore contribute gravitational

radiation at a wide range of frequencies. Recently, some work has been done on the possibility that

cusps or kinks in cosmic strings could produce beams of gravitational radiation.

If any of these scenarios comes true and in fact there is a cosmological background of gravi-

tational waves detected with planned instruments, this will obviously be fantastic news. However,

what if it isn’t seen? That won’t be a surprise, but there has been discussion about missions to go

after weaker backgrounds. It is often thought that the 0.1-1 Hz range is likely to be least “polluted”

by foreground vermin (i.e., the rest of the universe!). This may be, but it is worth remembering

that there are an enormous number of sources out there in even that frequency range, and that to

see orders of magnitude below them will required extremely precise modeling of all those sources.

Either way, whether we see a background or “merely” detect a large number of other sources,

gravitational wave astronomy has wonderful prospects to enlarge our view of the cosmos.

Intuition Builder

What other sources of stochastic gravitational waves can you imagine?


