
ASTR 498

Problem Set 6

Due Thursday, May 8

1. Gamma-ray burst flux distribution. Let us suppose that all gamma-ray bursts are standard

candles in the sense that they all have the same luminosity L and emit isotropically. Looking

out into the sky, the number observed that have a flux F or greater depends on the flux like

N(> F ) ∝ F−α. In each of the following two cases, please derive the power law α.

(a) [2 points] The sources are distributed homogeneously throughout all space, with constant

number density.

(b) [2 points] We are at the center of a distribution of sources that are being continually produced,

and all the sources are drifting away from that center at a uniform speed. There is an equal

probability of a burst occurring anywhere along each individual trajectory, but note that this

means the number density decreases with increasing distance from us (and part of the problem is

to calculate this decrease). This would be one consequence of a model in which the sources are

high-velocity neutron stars ejected from our galaxy.

2. One of the arguments in favor of the magnetar model of soft gamma-ray repeaters involves

the maximum luminosity they can sustain while still holding on to their plasma. The normal

Eddington luminosity would be about LE = 2 × 1038 erg s−1, but these sources can sustain

1042 erg s−1 or more without apparently ejecting large amounts of mass.

A suggested reason for this is that very strong magnetic fields decrease the electron scattering

cross section by a factor σ/σT = (h̄ω/h̄ωcyc). Here the photon energy is h̄ω, and ωcyc is the

electron cyclotron energy.

For [4 points], derive the minimum magnetic field in Gauss such that the critical luminosity

is at least 1042 erg s−1, assuming photon energies of h̄ω = 20 keV. Do your derivation with

dimensional analysis, obtaining h̄ωcyc using only h̄, c, the electron charge e, the electron mass me,

and the magnetic field B (no factors of 2, π, or the like). Hint: the square of the magnetic field,

B2, has units of energy density, and e2/(h̄c) is dimensionless. As a further hint, there is only one

factor of e in the numerator.

3. [4 points] This problem shows the limits of order of magnitude calculations in some cases.

Let’s say you’d like to estimate the recoil speed of a merged black hole remnant, due to linear

momentum carried away by gravitational radiation. To simplify things, suppose we have two

nonrotating black holes of masses M1 and M2 that collide head-on, so there is no spin at any

point. A theorem from black hole thermodynamics says that the square of the irreducible mass of

the final black hole cannot be less than the sum of the squares of the irreducible masses of the



initial black holes. For nonrotating black holes, this becomes

M2
final ≥ M2

1 + M2
2 . (1)

Like the increase in entropy, this is an inequality, but for our order of magnitude estimate we will

assume M2
final = M2

1 + M2
2 .

With that assumption, compute the final speed of the remnant (as a fraction of the speed of

light, and as a function of M1 and M2) assuming that all the radiated energy is carried away in a

single direction. For comparison, the maximum kick speed in practice, for any masses or angular

momenta, is somewhat under 4,000 km s−1.

4. [4 points] Dr. I. M. N. Sane has come to you with a brilliant idea. He has realized that LISA

will be the ideal instrument to detect moons around extrasolar planets. In particular, he envisions

a m = 6 × 1026 g moon (about 10% of Earth’s mass, bigger than any moon in the Solar System)

in a circular orbit of frequency of forb = 5 × 10−5 Hz around a planet with mass M = 2 × 1031 g,

about ten times Jupiter’s mass. At gravitational wave frequencies fGW < 10−3 Hz, LISA’s spectral

density sensitivity at signal to noise of 1 is 10−19(10−3 Hz/fGW)2 Hz−1/2. Assuming an observing

time of 108 seconds, evaluate the detection prospects if the system is at a distance of 10 parsecs

from us (about 3 × 1019 cm).


