
Absorption and Addition of Opacities

Initial questions: Why does the spectrum of the Sun show dark lines? Are there

circumstances in which the spectrum of something should be a featureless continuum? What

can we learn from spectra?

If the only way photons could interact was via simple scattering, there would be no

blackbodies. We’ll go into that in much more detail in the next lecture, but the basic reason

is that in simple scattering there is no creation or destruction of photons. For that we have

to treat emission and absorption, respectively. We’ll start with absorption, and talk about

the important principles of how opacities are combined.

To be ridiculously basic, absorption happens when a photon gets eaten by something. It

could be by an atom or molecule, in which case the atom or molecule changes atomic state or

is even ionized or dissociated. It could be by a free electron moving near an ion, in a process

inverse to bremsstrahlung. Whatever the detailed process, though, it is rarely frequency-

independent (unlike scattering, which is often nearly independent of photon frequency). In

addition, multiple different sources of opacity are present simultaneously, meaning that to

get a qualitative handle on how spectra will look, how radiation will move through a medium,

etc., we need to know how to combine opacities.

For the following, it is useful to start by imagining a hypothetical situation in which all

energy transport is done with photons of a fixed energy and polarization. Of course, Doppler

shifts mean that the photon energy “seen” by an interacting particle (an electron, an atom,

a molecule, ...) could vary depending on the motion of the particle, but we’ll ignore that.

Thus we’ll suppose that after scatterings, and even after absorption and re-emission, the

photon energy and polarization are the same as they were before. This would be an example

of a fixed channel of energy transfer. For a fixed channel, the opacities add linearly (highest

opacity dominates). Even though we have imagined photons forced to retain their energy

and polarization, for our analysis a given energy and polarization counts as a fixed channel;

that is, if we consider photons that currently have a given energy and polarization, that’s

the channel.

Now, in reality there will always be processes that can change the energy of a photon or

even its polarization. Doppler shifts will do it, for example, and absorption and re-emission

will certainly do it. Thus the photon energies and polarizations with low total opacity will

be more effective at transporting energy than will the photon energies and polarization with

high total opacity. For the discussion below, different energies and polarizations count as

independent channels of energy transfer. Between independent channels, therefore, it is the

lowest opacity that matters most.



We can even go beyond photons. Consider the interior of a star, in which the temperature

varies as a function of position and thus energy is transported. At a given location the energy

will be shared by photons, electrons, and ions (and occasionally more exotic particles). If you

consider, say, the photons and electrons, they can both transport energy (by radiation and

by conduction, respectively). If the effective opacity to photons is a lot less than the effective

opacity to electron conduction, then most of the energy is transported via radiation. The

reverse can happen if the effective opacity to conduction is much less than that to radiation.

Because these concepts have posed great difficulties throughout many classes I have

taught, I will now present them again in a slightly different way:

• The cross section is the “effective area” of a single particle/atom/molecule/whatever.

Equivalently, it’s the number of interactions of that particle per second divided by the

flux of incoming photons (number per area per second).

• The opacity is the “effective area” per gram of material. This is not equivalent to cross

section. For example, the ionization cross section can be much larger than the Thomson

cross section for some photon energies. However, the ionization opacity also depends

on the number of atoms with electrons; the ionization opacity of fully ionized material

is zero, even though the ionization cross section is still the same as it was.

• For a fixed channel of energy transfer, highest opacity dominates. For example, suppose

we are interested in the opacity to photons of a given frequency. The photons will likely

interact first via the highest opacity process. If, e.g., there is a line at that frequency,

the photons will interact quickly. This means that for a fixed channel, opacities add

linearly. Example: suppose we construct a half-sphere that is mirrored on the inside,

and put a light source in the middle. We poke some holes in the sphere, and surround

the sphere with transparent glass. Ask class: In a given direction, what determines

whether light shows through? If the sphere does not have a hole (the opacity is high),

then it is dark in that direction. The presence of a low opacity along that line of sight

(the transparent glass) doesn’t make a difference. For a fixed channel, opacities add

like resistors in series.

• For independent channels of energy transfer, lowest opacity dominates. For example,

consider the “average” opacity over a full blackbody spectrum. Photon energies with

low opacity are easy for photons to travel in. So, photons tend to diffuse into those

energies away from energies where the opacity is high. That’s why in optically thick

material, lines are dark. Example: in the half-sphere example above, Ask class:

where does the light come out? It comes out where there are holes (i.e., low opacity).

In directions where there are no holes, the light reflects back and eventually escapes

via a hole. Another example is conduction versus radiative energy transport. When

energy is easily transferred via conduction, that’s what determines the overall energy



transfer rate. When energy is easily transferred via radiation, that’s what dominates.

Example: if you’re standing in cold air, you lose heat at a certain rate. If you put your

hand on a piece of metal at the same temperature as the air, you lose heat a lot more

rapidly! It’s an independent channel of energy loss. Ask class: mathematically, how

would one weight the smaller opacities more? For independent channels, opacities add

harmonically, that is, 1/κ =
∑

(1/κi) for different channels i, weighted appropriately.

For independent channels, opacities add like resistors in parallel.

With these firmly in mind, let’s quickly explore several different types of absorption.

Each of these will be treated in greater detail later on, so this is just a survey.

Radiative opacity sources: Ask class: what are the ways in which a photon can

interact? Can be done off of free electrons, atoms, molecules, or dust. Can also interact with

protons/nuclei, magnetic fields, and other photons, but in this class we’ll ignore those for

the most part. For free electrons, have electron scattering (not an absorption) and free-free

(inverse bremsstrahlung, which is an absorption). Scattering means that the photon retains

its identity (in a somewhat ill-determined way), whereas absorption means that the photon

is destroyed and later another one is emitted.

For atoms, have transitions between atomic levels (bound-bound absorption) and ion-

izations (bound-free absorption). Ask class: when do they expect opacities involving free

electrons to be most important? When ionization fraction is high. Molecules and dust are

more important for lower-energy photons. Same with H− opacity, which is important for

optical opacity in some stars.

Bound-bound absorption This is when a bound electron absorbs a photon and conse-

quently makes a transition to a higher bound level. As an example, take the Lyα resonance

of hydrogen, where an electron in the 1s state is absorbed into the 2p state. This has an os-

cillator strength of 0.42 and a peak cross section of 7.2×10−11 cm2. This is enormous, a good

1014 times the Thomson cross section. Ask class: do they expect this to be important in the

overall transport of energy? It’s a really high cross section, but over only a very small range

in energy, so it produces a dark line but the energy easily moves to neighboring frequencies

and escapes where the opacity is lower. The lifetime is about 10−9 s, so the energy width is

~/10−9 ≈ 10−6 eV. Generally, therefore, bound-bound transitions have extremely high cross

sections over extremely small regions of the spectrum. There are cases in which there can be

so many lines that their wings overlap, leading to “line blanketing” and significant effects on

opacities. Ask class: would they expect that this would happen in stars with low fractions

of elements heavier than helium (“metals” in astronomical nomenclature) or high fractions?

Bound-free absorption The process here is that a photon ejects an electron from

a bound state inside an atom. Ask class: let’s say you have a photon whose energy is

much larger than this threshold energy. Do you expect the cross section (i.e., strength of



interaction) to increase or decrease with increasing energy? Decrease, because it’s farther

from the resonance energy of ionization.

Free-free absorption In this process a free electron passes by an ion of charge Z,

scatters off of it, and absorbs a photon. This is the inverse process to bremsstrahlung.

Conservation of energy means that

p2k
2me

=
p2s

2me

+ ~ω . (1)

Here, of course, we’re assuming nonrelativistic electrons. The presence of an ion is very

important. For example, suppose we just want an electron by itself in free space to emit a

photon. Then it is impossible to conserve both energy and momentum.

Rosseland mean opacities: When the optical depth is extremely high, one is well

justified in assuming that the local radiation is that of a blackbody. We then want to

know an “average” opacity such that if we assume that the opacity at all frequencies is this

average, we’ll get the radiative transfer about right. The way to do this is to weight the

average harmonically by the Planck (blackbody) function:
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where Bν = (2hν3/c2)/(ehν/kT − 1) is the Planck function. This is the Rossland mean

opacity. Ask class: at a given frequency ν, how should we combine opacities from different

sources, e.g., scattering or absorption? Linearly (highest opacity is most important for a

single channel). Ask class: why is the Rosseland mean opacity harmonically weighted?

Because the low opacities will dominate the transfer, since photons at those energies will go

farther and sample larger gradients in temperature.

The Total Radiative Opacity

At this point, let’s step back and think about what this means. In principle, a photon

propagating through gas will have some probability of interacting in all of the ways above

(plus others we haven’t discussed as much, like pair production for high energy photons, and

so on). We need a way to determine what dominates when.

Ask class: Suppose we suppress all photon interaction mechanisms except for one (scat-

tering for definiteness). Let’s consider photons of a given energy. What factors determine

the mean free path of those photons? The cross section and the number density of scatterers.

Specifically, ` = 1/nσ. Ask class: is n the number density of gas particles in any state, or

just those that can scatter? Only those that can scatter. Ask class: so, suppose we have a

gas of 100% neutral hydrogen atoms. What is the mean free path to Thomson scattering?

It’s infinite, because there are no free electrons from which the photons would scatter.



This points out a difference between cross section and opacity. The cross section says (in

this case): suppose you have free electrons. What is the surface density (in cm−2) of those

free electrons so that only a fraction e−1 of photons go unscattered? That’s just Σ = 1/σ.

But this does not tell you how important scattering is! For that, you need to know the

number density of the scatterers. Opacity is expressed in terms of κ =cm2 g−1. How many

scatterers (each with cross section σ) are there per gram of material? κ/σ.

So, Ask class: suppose you have hydrogen gas that is 100% ionized. How important do

you expect bound-free ionization to be? Totally unimportant, because there are no bound

atoms! How about bound-bound? Same thing. Of the processes we’ve considered, only

free-free and scattering could possibly contribute.

Okay, now let’s suppose we have photons of a given energy. We’ve computed the opacities

for all the different processes. Ask class: which processes will dominate, those with high

opacities or those with low opacities? High opacities, since those interactions will occur first.

At a given frequency, high opacities win.

Now, suppose that we have a flat input spectrum of photon energies. We send it into

a region of gas, where the total opacity varies as a function of energy. Ask class: do they

expect most of the radiation transferred through this region to be at frequencies of high

opacity or low opacity? Low opacity, because it is easier to propagate photons that way.

That’s why in optically thick plasmas (like the Sun!), lines tend to be dark, because there’s

less emission there. In fact, when one considers the “effective” opacity over a spectrum in

an optically thick region, one usually takes a harmonic average (that is, weighted by the

reciprocal of the opacity). That’s the Rosseland mean.

Summary: opacity, not cross section, determines importance of processes. At a given

photon energy, high opacities dominate. Over a spectrum, low opacities dominate.

Now let’s apply these principles in a few cases. Consider a situation in which electron

scattering as well as the absorption processes we considered (bound-bound, bound-free, free-

free) all exist. Suppose we pick a photon frequency in the center of a bound-bound transition

line. Ask class: will the opacity be high or low at that frequency? It will be high: for a

single channel, the highest-opacity process dominates. Now suppose our photons are doing

their propagating in the Sun. We see photons of a given frequency from the level at which

they last interacted. The temperature of the Sun increases closer to the core. Ask class:

given this, do we expect spectral lines in the Sun to be brighter or darker than the nearby

continuum emission? Darker. The logic is that for higher opacity there are more interactions,

so photons finally stream to us from a region of the atmosphere that is higher, and therefore

cooler, than it would be for a photon frequency with a lower opacity.

Next example: we have a star with a fixed flux. Initially, there are no spectral lines, just



continuum opacity. We measure the specific intensity at a given frequency ν0. Now we add

an additional opacity source in the form of a single spectral line with a frequency ν1 that

is well separated from ν0. The integrated flux over all photon frequencies is kept constant.

Ask class: does the specific intensity at ν0 go up, go down, or stay the same? It goes up.

The addition of the line means that less flux is getting out at ν1. The total flux is kept

constant by assumption, so the deficit in flux must be made up in the rest of the spectrum.

Therefore, the specific intensity at ν0 goes up by what is probably a tiny amount.

Yet another example. Focus on electron scattering. When a large magnetic field is

present, scattering is modified. Qualitatively, this is because scattering involves an electro-

magnetic wave wiggling an electron in the direction of its polarization; the electron then

radiates. If the magnetic field is strong, it’s tough to wiggle the electron in that direction.

The upshot is that for polarizations along the field (where the field offers no resistance)

the cross section is the same as in no field, whereas for polarizations across the field the

cross section is much less (qualitatively speaking). So, we have two cross sections for two

independent polarizations. Consider propagation of radiation in such an environment. Ask

class: which polarization will dominate, in the sense of carrying most of the flux? The low

cross section mode, because these are two independent channels.

Recommended Rybicki and Lightman problem: 1.9

Appendix: Derivation of the Rosseland mean opacity

Here I essentially duplicate the discussion in our textbook, section 1.8.

We start with the equation of radiative transfer:

∂Iν
∂s

= −(αν + σν)(Iν − Sν) . (3)

Here ds is a short distance over the path of the radiation, Iν is the specific intensity, αν
is the absorption coefficient (which is the absorption opacity times the density), σν is the

scattering coefficient (which is the scattering opacity times the density), and Sν is the source

function (which is the emissivity divided by αν + σν). In words, this equation expresses the

intuitive understanding that the change of specific intensity over a small distance involves a

decrease (from radiation that is absorbed or scattered) plus an increase (from any emission

along this path by matter that is in the way).

Now let’s make the assumption that we are very deep in a medium, so that we can

assume that all processes are in balance with their inverse and thus that, locally, matter

emits as a blackbody. As a result, Sν = Bν . However, to allow energy to flow, we assume

that the temperature can change with depth in the medium: T = T (z). We thus assume



that only one direction, z, matters and thus we have a plane-parallel system. In that case,

only the angle θ from the z axis matters. For convenience, we will define µ = cos θ. Then

ds = dz/µ and the equation of radiative transfer becomes

µ
∂Iν
∂z

= −(αν + σν)(Iν − Sν) . (4)

We can then rewrite this as

Iν(z, µ) = Sν −
µ

αν + σν

∂Iν
∂z

. (5)

In perfect equilibrium, Iν = Sν = Bν . However, we are taking into account that there

can be some slow temperature variation as a function of z, where “slow” means that the

temperature only changes by a tiny amount (∆T/T � 1) over a mean free path. Thus,

maintaining the derivative term, we have

Iν(z, µ) ≈ Bν(T ) − µ

αν + σν

∂Bν

∂z
(6)

Now suppose that we want to compute the net flux through some layer z. This flux is

Fν(z) =
∫
Iν(z, µ)µdΩ

= 2π
∫ 1

−1 Iν(z, µ)µdµ .
(7)

Since Bν(T ) is isotropic, that term integrates to zero and we get

Fν(z) = − 2π
αν+σν

∂Bν(T )
∂z

∫ 1

−1 µ
2dµ

= − 4π
3(αν+σν)

∂Bν(T )
∂z

= − 4π
3(αν+σν)

∂Bν(T )
∂T

∂T
∂z
.

(8)

In the last step we use the chain rule. This is the origin of the initially-mysterious ∂Bν(T )/∂T

factor; it comes from radiative transport in a system with a temperature that varies with

height. Integrating over frequency gives us the total flux:

F (z) =

∫ ∞
0

Fν(z)dν = −4π

3

∂T

∂z

∫ ∞
0

(αν + σν)
−1∂Bν(T )

∂T
dν . (9)

For the next step, we note that the presence of a ∂T/∂z in this expression is reminiscent of

a diffusion equation, where the flux of a quantity (here it’s the energy flux) is proportional

to the gradient of another quantity (here it’s the temperature). We also see that the inverse

of the sum of the absorption and scattering coefficients is in some sense weighted by the

derivative of Bν with respect to temperature. In general, a normalized weighting of some

function f(x) by another function g(x) can be expressed as
∫
f(x)g(x)dx/

∫
g(x)dx, where

the integral is over the full range of x. To put our expression in this form, we need to

multiply, and divide, by
∫∞
0

(∂Bν(T )/∂T )dν. Since∫ ∞
0

(∂Bν(T )/∂T )dν =
∂

∂T

∫ ∞
0

Bνdν =
∂

∂T
(σSBT

4/π) = 4σSBT
3/π , (10)



where σSB is the Stefan-Boltzmann constant, this gives us

F (z) = −16σSBT
3

3

∂T

∂z

∫∞
0

(αν + σν)
−1 ∂Bν(T )

∂T
dν∫∞

0
(∂Bν(T )/∂T )dν

. (11)

Defining the Rosseland mean absorption coefficient using

1

αR
≡
∫∞
0

(αν + σν)
−1 ∂Bν(T )

∂T
dν∫∞

0
(∂Bν(T )/∂T )dν

(12)

then gives finally

F (z) = −16σSBT
3

3αR

∂T

∂z
. (13)

This is in the form of a diffusion equation. It explains why the Rosseland mean absorption

coefficient (or equivalently the Rosseland mean opacity) has harmonic weighting with respect

to the blackbody function. We also see in this derivation that this approach is useful when

(1) the matter and radiation field are very close to equilibrium and thus close to blackbody,

and relatedly (2) the mean free path is much smaller than distances over which quantities

such as temperature change significantly, so that the diffusion approximation is reasonable.


