
Retarded Potentials and Radiation

Initial question: Why are particle colliders that involve protons large circles, whereas

those that involve electrons are straight lines?

Retarded potentials are needed because at a given location in space, a particle “feels”

the fields or potentials of other charges, not where those charges are now, but where they

were a light travel time ago. A few lectures ago we talked about how electromagnetism can

be phrased in terms of potentials rather than fields. Ask class: if you have a single charge e

a distance r away from a given point, what is the electrostatic potential there, ignoring light

travel times? It’s just φ = e/r. Now, generalizing, suppose one had lots of (static!) charges

at different locations. Ask class: how then would you find the potential? It’s additive, so

the total potential would be

φ =
∑
i

ei/ri , (1)

where each source has charge ei and is a distance ri from the point in question. Now, suppose

that you had a bunch of moving charges ei. If you pick a particular time t and you know

that for each particle the distance was rreti (t) a light travel time ago, Ask class: what will

the potential be then?

φ =
∑
i

ei/r
ret
i (t) . (2)

Note that more distant charges will have had a longer light travel time than nearer charges,

so we can no longer evaluate all the particles simultaneously. If we take this formula and

write it for a continuous charge density ρ, then the scalar potential at a time t and location

r is then

φ(r, t) =

∫
[ρ]d3r′

|r− r′|
(3)

where the brackets mean to evaluate the quantity at the retarded time:

[Q] = Q

(
r′, t− 1

c
|r− r′|

)
. (4)

Note that here we’ve shifted things slightly: instead of following individual charges, we’re

evaluating the potential from fixed points in space, but allowing the charge density to change.

It amounts to the same thing.

One can go through an identical procedure for the vector potential:

A(r, t) =
1

c

∫
[j]d3r′

|r− r′|
. (5)



Remember that the potentials have gauge freedom, so in writing φ and A this way we’ve

chosen a particular gauge, in this case the Lorentz gauge, in which

∇ ·A +
1

c
∂φ/∂t = 0 . (6)

That’s no big deal in most circumstances, but it’s good to be clear.

A specific charge “distribution” that one can imagine is that of a single charge(!). If

it has charge q and moves along a trajectory r0(t), so that its velocity is u(t) = ṙ(t), then

we can congratulate ourselves on being cool by writing the charge and current densities in

terms of Dirac delta functions:

ρ(r, t) = qδ(r− r0(t)) ,

j(r, t) = qu(t)δ(r− r0(t)) .
(7)

Lovely. If we crank a bit (see §3.1 of Rybicki and Lightman) we get the Liénard-Wiechart

potentials
φ =

[
q
κR

]
A =

[
qu
cκR

]
.

(8)

Here the brackets mean an evaluation at the retarded time, and κ(t′) ≡ 1 − n(t′) · u(t′)/c,

where n = R/R is the unit vector in the direction to the charge. That κ factor is mighty

important. If the charge isn’t moving, u = 0, the whole thing is just 1 and you get the

potentials you expect from electrostatics (A = 0, φ = q/R). On the other hand, for speeds

close to the speed of light this factor produces strong intensity in the direction of motion of

the particle, i.e., a beaming effect.

Let us ponder what this does for us. You may remember that the Poynting flux carried

by an electromagnetic field is S = c
4π
E ×H. If you forget, remember that (aside from the

1/4π factor) you can get this just from units, if you remember that B2 and E2 have units

of energy density. Anyway, think about a static charge distribution. Ask class: what are

φ and A? φ is just the sum of qi/Ri evaluated at the charges’ current position (since they

aren’t moving), and A = 0 because the charges are fixed (no current). Ask class: so, what

is S in that case? Zero, of course. A static charge distribution has no flux.

It is therefore clear that radiation requires motion. What is less clear is that it’s the

retarded time that is the key. One can differentiate the potentials to get the fields (RL

say that this is “straightforward but lengthy”, always a warning that you may be in for

an algebraic challenge). One then ends up (§3.2 in RL) with an electric field that can be

written as the sum of two terms: one that does not depend on the acceleration β̇ (where

β = u/c), and one that does. Ask class: which of these terms do they expect will produce

radiation? From the arguments we used a few classes ago, it must be the one proportional

to the acceleration. A static charge distribution emits no radiation, so a charge at constant

velocity can’t either (since you could transform to a frame in which it is static).



Now an interesting thing is to look at the radius dependences of the two terms for the

electric field (and the corresponding magnetic field, which is just B(r, t) = [n× E(r, t)]).

The “velocity field” term is proportional to 1/R2, whereas the “radiation field” term is

proportional to 1/R. If we consider just the velocity field then the flux S ∝ EB ∝ 1/R4,

meaning that when one integrated over a sphere at large radius the net flux would be ∝ 1/R2,

so the system wouldn’t radiate to infinity. The radiation field is necessary for radiation, hence

the name. For the record, the radiation field is

Erad(r, t) =
q

c

[ n

κ3R
×
{

(n− β)× β̇
}]

. (9)

Note that E ⊥ n, so Brad = n×E has the same magnitude as Erad. Also for the record, the

velocity field is

Evel(r, t) = q

[
(n− β)(1− β2)

κ3R2

]
. (10)

The reason to write these is so that we can understand them in some limits.

Let’s try the limit of small β, β � 1. This is nonrelativistic motion. Ask class: at

large distances, which component of E do they expect will dominate? The radiation field.

Ask class: by what power of R? By a single power. Let’s see if this is valid by comparing

the magnitudes of the velocity and radiation fields. Ask class: ignoring cross products and

other complications, what is the magnitude of the velocity field to lowest order in β? It’s

Evel ≈ q/(κ3R2). Note that for β � 1, κ ≈ 1, so this reduces to the standard electric field

for an unmoving point source. Ask class: to lowest order in β, what is the magnitude of

the radiation field? It’s Erad ≈ (q/c)β̇/(κ3R). Taking the ratio and writing β̇ = u̇/c, we

have

Erad/Evel ≈ Ru̇/c2 . (11)

There are several things to notice about this. First, the ratio increases like the first power of

R, as expected. Second, when there is no acceleration there is no radiation (we’ve seen this

several times before, but it’s always good to check). Third, if the speed of light were infinite

there would be no radiation. This reinforces that radiation is fundamentally a relativistic

effect, even in the low-speed limit. We can get some further understanding by assuming that

the particle has some characteristic frequency of oscillation ν, so that u̇ ≈ uν = uc/λ. In

that case,

Erad/Evel ≈ (u/c)(R/λ) . (12)

It’s often good to express a dimensionless ratio as the product of dimensionless ratios, so

one can see at a glance what the dependences are. This says that in the “near zone”, R < λ,

the velocity field dominates by a factor > c/u. In the “far zone”, R� λ(c/u), the radiation

field dominates.

We can now use this to get a handle on the simplest type of radiation: Larmor’s formula

for radiation from an accelerated nonrelativistic point charge. In the limit β � 1, an angle



θ from the direction of acceleration the magnitudes of the electric and magnetic radiation

fields are Erad = Brad = (qu̇/Rc2) sin θ. Ask class: how can we use this to compute the

energy flux? The Poynting flux is S = (c/4π)E2
rad in this case (because the electric and

magnetic field magnitudes are equal). If we consider the energy per time emitted into a solid

angle dΩ at radius R, then the area at that solid angle is R2dΩ, so we have

dW

dt dΩ
=
q2u̇2

4πc3
sin2 θ . (13)

To get the total power we integrate over solid angles, which gives us the Larmor formula:

P = 2q2u̇2/3c3 . (14)

Again, let’s look at this equation to see if it satisfies our intuition. The power must be

proportional to an even power of the charge, since the sign doesn’t matter. It must not

depend on the velocity, but rather the acceleration, and again the sign can’t matter so it

must depend on an even power of the acceleration. Since (as always!) this is a relativistic

effect, if c →∞ the power would vanish. All these intuitive conditions are satisfied by this

formula. Two other things should be noticed. First, the radiation is in a typical dipole

pattern, proportional to sin2 θ; this means that no radiation is emitted along the direction of

acceleration. Second, the instantaneous direction of Erad is determined by both u̇ and n. In

particular, for linear acceleration the radiation will be 100% linearly polarized in the plane

of u̇ and n (these last two points are taken directly from Rybicki and Lightman). By the

way, note the problem this poses for atoms in classical physics. According to this formula,

an electron circling around a proton would emit energy continuously and in an accelerating

way, since u̇ will increase as it spirals in. This was one of the contradictions that helped spur

the development of quantum mechanics.

What if we have a bunch of particles? In general, it becomes a lot tougher because all the

different particles will have different retarded times. Put another way, if we’re worried about

a particular frequency component of the radiation, we have to keep track of phase relations

for all the individual particles. Ask class: can they think of a circumstance in which the

phase relations are close enough to constant that this can be simplified? One way is if the

frequency of interest is much lower than c/L, where L is the characteristic dimension of the

source. Then, the differences in retarded time amount to just a small fraction of a phase.

Note that a particular example of this is that if the particles are moving nonrelativistically,

u� c, then the characteristic frequency of their movement across the region, u/L, is much

less than c/L. This means that for nonrelativistic motion we can simplify the situation

dramatically. Then, the radiation field is

Erad =
∑
i

qi
c2

n× (n× u̇i)

Ri

, (15)



summed over all particles. If we think about an observation point very far from the sources,

then the differences in distances are negligible and we can take some R0 as characteristic of

all the distances. Then Erad ≈ n× (n× d̈)/c2R0, where we have defined the dipole moment

as d ≡
∑

i qiri. In an analogous way to the Larmor formula for a single charge’s power, the

radiation power is P = 2d̈2/3c3 in this approximation.

You may be familiar from other cases with dipole or multipole expansions. For example,

in Newtonian gravity you can estimate the potential around a mass distribution by expanding

it in powers of the distance, where the first term is that of a point mass at the center of

mass, and higher order terms come in as well. It’s similar here, with the caveat that we have

to think of nonrelativistic motion to be strictly correct. The book goes into a little more

detail about general multipolar expansions.

Our last topic for this lecture will be radiation reaction. Since an accelerated particle

radiates, it carries away energy, linear momentum, and angular momentum. This means

that the motion of the particle itself must be modified. We can get an approximate idea of

what this modification does by treating it as an extra force, the force of radiation reaction.

First, though, let’s figure out under what circumstances the force can be treated as a

perturbation. Suppose the particle has a speed u, so its kinetic energy is ∼ mu2. Then from

the Larmor formula the time in which the kinetic energy is changed substantially is

T ∼ mu2/P ∼ (3mc3/2e2)(u/u̇)2 . (16)

Let’s estimate a typical orbital time for the particle of tp ∼ u/u̇. Then for the energy lost in

an orbital period to be small, T/tp � 1, or tp � τ ≡ 2e2/3mc3 ≈ 10−23 s(!). That’s a mighty

small time. It is about the time necessary for light to travel a distance equal to the classical

electron radius 2.8 × 10−13 cm. Now, to figure out the force our first inclination would be

to set the force times the velocity equal to the power radiated, Frad · u = −2e2u̇2/3c3. The

problem is that (1) Frad can’t depend on u since that would imply a preferred frame, so

(2) one side of this equation depends on u while the other doesn’t! Oops. Instead, we can

see if this can be satisfied in a time-averaged sense.

−
∫ t2
t1

Frad · udt = (2e2/3c3)
∫ t2
t1

u̇ · u̇dt

= (2e2/3c3)

[
u̇ · u

∣∣∣t2
t1
−
∫ t2
t1

ü · udt
]
.

(17)

In the second step we integrated by parts. If we assume that the motion is periodic, or at

least that u̇ · u is the same at t2 as at t1, then the first term on the right hand side vanishes

and we find that Frad = mτ ü in a time-averaged sense. That’s all very well, but as always we

want to know the limits of this expression. Ask class: what does this say about a particle

with constant linear acceleration? Then ü = 0, so it would imply no radiation reaction force,

even though the particle does radiate (since it is accelerated). The problem is that then the



expression at the limits doesn’t vanish, so our approximation is not valid. For most cases,

though, it is if you average over a long enough time and the motion is bounded.

If you put this into a grand equation of motion it reads

m(u̇− τ ü) = F (18)

assuming some applied force F. This is a little weird. One normally doesn’t encounter

third time derivatives like this. A problem one can encounter in such cases is spurious

solutions. For example, suppose F = 0. Then u=constant is obviously a solution, but

so is u = u0 exp(t/τ), which is a runaway solution that becomes large quickly. In such

cases one must use physical or mathematical considerations to eliminate this solution. The

mathematical reason is that u̇ ·u(t1) 6= u̇ ·u(t2), so in fact the radiation reaction force would

have a different form. You have to be careful in cases like this.

Recommended Rybicki and Lightman problem: 3.1


