
Quantum Statistical Mechanics

We’ve talked about the interactions of photons, and (briefly) how they differ from

the interactions of electrons in a fundamental way related to their quantum statistical

properties. It’s the difference between bosons and fermions, specifically whether particles

“like” to occupy the same quantum state (bosons) or don’t (fermions). In this lecture we’ll

explore that a bit more. To start, we need to define the concept of a chemical potential.

Chemical potential:

µi =

(

∂E

∂Ni

)

S,V

. (1)

Here Ni is the number density per gram of the ith species, so that Ni = ni/ρ.

Thermodynamic and chemical equilibrium require that if there are reactions that might

change the Ni, then
∑

i µidNi = 0. Photon number is not conserved, so µγ = 0. Note

that here we’re interested in reactions that take place fairly rapidly, so things like nuclear

reactions (which usually take years to billions of years) aren’t included. Technically, these

reactions mean that the system is not in equilibrium, but this is another example of how we

simplify by dropping small terms. However, we should remember that it is possible to get

to a lower-energy state via these reactions, and that at some point if the reactions are fast

compared to chemical reactions then they must be included.

The dNi are related to each other by particular reactions, so that means we can also

write
∑

i µiνi = 0, where νi are the stoichiometric coefficients. From this, can see in another

way that µγ = 0: if a reaction of the form A → B + γ is allowed, so is A → B + γ + γ. If

µγ were nonzero, equilibrium would not be possible.

A lot of the interesting thermodynamic quantities can be calculated from the distribution

function in 6-dimensional phase space (three coordinate, three momentum). This is also

called the occupation number. For a given species, the distribution function for a particular

momentum is

n(p) =
1

h3

∑

states

1

eEtot(state)/kT ± 1
. (2)

Here Etot = −µ + E(state) + E(p), where E(state) is the energy of the state of that species

relative to some level (often the ground state energy) and E(p) is the kinetic energy for

momentum p. Note that the energy level relative to which one determines Estate is a free

parameter, but −µ + E(state) isn’t, which can lead to varying definitions for µ (beware!).

For degenerate energy states the distribution function is sometimes written with a gj in

the numerator, which is the number of states having the same energy Ej. Same deal. Of

course (ask class) the ±1 refers to Fermi or Bose statistics. The point is that Fermi

wavefunctions (for half-integral spin particles) are antisymmetric, so they avoid each other



and the “occupation number” (the 1/[exp(blah) + 1] bit in the distribution function) is

always less than 1. Bose wavefunctions (for integral spin particles) are symmetric, and

can have occupation numbers from 0 to infinity. Ask class: what are some examples of

fermions? Electrons, protons, neutrons, for example (also neutrinos, quarks). Ask class:

what are some examples of bosons? Photons are the best known among the elementary

particles. Also, vector bosons (Z0, W±, carriers of the electroweak force), gravitons (spin

2, if they exist), and I believe gluons. Interesting that force carriers are bosons, and the

“point particles” are fermions.

The distribution function is in (cm-momentum)−3 units. Usually assume that

momentum space is spherically symmetric, so that the physical number density is

n =
∫

p
n(p)4πp2 dp . (3)

In general, the kinetic energy is Ask class: E(p) = (p2c2 + m2c4)1/2 − mc2. The isotropic

pressure is

P =
1

3

∫

p
n(p)pv4πp2 dp (4)

where the velocity is ∂E/∂p, and the internal energy is

E =
∫

p
n(p)E(p)4πp2 dp . (5)

Tell class: we are now going to concentrate for a while on “perfect” noninteracting

particles, for simplicity.

Specific application: blackbody radiation. For photons, µ = 0, g = 2 (because there

are two polarizations), Ej = 0 (because there are no excited states), E(p) = pc, and minus

in the denominator because photons are bosons. Put it together and what have you got?

(bippity boppity boo, but never mind that). The photon number density is then

nγ =
8π

h3

∫ ∞

0

p2 dp

exp(pc/kT ) − 1
≈ 20 T 3 cm−3 . (6)

The radiation pressure is aT 4/3 and the energy density is aT 4, where a = 8π5k4/15c3h3 =

7.6× 10−15 erg cm−3 K−4. If one considers this in the context of equations of state, this has

the consequence that stars whose pressure and energy density are dominated by radiation

are close to instability. This is one of the reasons that very high-mass stars M > 100 M⊙

are not very stable. For somewhat separate reasons having to do with cooling, accretion

disks that are dominated by radiation pressure are also unstable.

From this, we can also get the spectral distribution for a blackbody.

uν dν =
8πhν3

c3

1

ehν/kT − 1
dν erg cm−3 Hz−1 Hz . (7)



Monatomic Gas: The bit about µ ≪ 0 for an ideal gas can be derived by computing

the number density and then getting µ from it; can assume it now and find that it is correct.

Given that it is, the ±1 in the denominator is superfluous. Assume a nonrelativistic

gas for starters, so Ask class: E(p) = p2/2m and v = p/m. Assume only one energy

level, E = E0; we can reference the energy to this single energy level and define E0 = 0

(this simply redefines µ relative to that energy level, and different definitions exist in the

literature). For an ideal gas µ ≪ −kT . The number density is then

n =
4π

h3
g

∫ ∞

0
p2eµ/kT e−p2/2mkT dp . (8)

This can be integrated to find the relation between µ and n, the total number density. This

relation is

eµ/kT =
nh3

g(2πmkT )3/2
. (9)

If you have a state with an energy Ej relative to the reference energy, then with this

simplification the equation above would have to be multiplied by eEj/kT on the rhs.

Similar integrations show that P = nkT (big surprise!) and E = 3
2
nkT .

Fermi-Dirac particles: Suppose we have a particle such as an electron, proton, or

neutron that is spin 1/2 and therefore a fermion. Let the energy reference level be mc2

(again, other choices are possible!). Then the degeneracy is 2, so the number density is

n =
8π

h3

∫ ∞

0

p2 dp

e[−µ+mc2+E(p)]/kT + 1
. (10)

In general, Ask class: E(p) = mc2
[
√

1 + (p/mc)2 − 1
]

and the velocity is

v(p) =
∂E

∂p
=

p

m

[

1 +
(

p

mc

)2
]−1/2

. (11)

Ask class: how can we test whether this equation is correct? Limits for p → 0, where

v = p/m (correct) and p → ∞, where v = c (correct). How about parity? v is in same

direction as p, which is right. Ask class: from this, what is a rough boundary in momentum

between relativistic and non-relativistic? When p ≈ mc.

Completely degenerate gas: what is degeneracy? Ask class: it’s when the density

is high enough that particles start encroaching on each other’s states. Ask class: what

are the different implications for fermions and for bosons? For fermions this leads to Pauli

exclusion and the fermions are forced into other energy states, whereas with bosons this

leads to multiple occupation of the same state. The result is a host of phenomena, such as

lasers, Bose condensation, superfluidity, and superconductivity. Some interesting properties

can be derived from the fact that the particles participating in these phenomena are in a



single state. For example, superfluids can’t rotate because the particles would be moving

with different velocities and hence would not be in the same state. Instead, any rotation in

a superfluid is quantized in vortices of normal fluid.

Anyway, complete degeneracy occurs when kT → 0, or more precisely when kT is much

less than the numerator of the exponent above. The interesting part of the integrand is

F (E) =
1

e[E−(µ−mc2)]/kT ] + 1
. (12)

Ask class: what are the values for kT → 0 when the exponent is positive and when

it is negative? Clearly, either 0 or 1 for kT → 0, depending on whether, respectively,

E > (µ − mc2) or E < (µ − mc2). In this case, therefore, there is complete occupation up

to the “Fermi energy” EF = µ − mc2 and no occupation beyond that. When kT is finite,

the transition between occupation and no occupation occupies a width ∼ kT in energy.

Only these particles can interact, a fact which has great importance for things like energy

transfer. Specifically, it means that only a fraction ∼ (kT/EF ) of particles can interact,

so mean free paths are a lot longer than one would imagine and in this limit conduction

can be very important. Note: as in our discussion of opacities, energy transfer tends to

be dominated by whatever process can transport energy over a long distance rapidly. If

there is a lot of scattering/absorption, this slows down the carrier particles. In degenerate

matter, electrons travel a long way and hence conduction can be important; similarly, in a

metal the periodicity of the potential cuts down on interactions and allows the electrons to

travel far.

A simple way to remember how to get a Fermi momentum comes from the uncertainty

principle. This says that ∆p∆x > h̄. If the number density is n, then the typical region

in which a particle is confined has dimension ∆x ∼ n−1/3. This implies that the Fermi

momentum is pF ∼ ∆p ∼ h̄n1/3. In nonrelativistic mechanics E ∝ p2 ∝ n2/3, and in

ultrarelativistic mechanics E ∝ p ∝ n1/3. Note, by the way, that you can also get the energy

in the nonrelativistic limit by considering an infinitely deep square well with dimension

∆x ∼ n−1/3; the energies go as (∆x)−2, as expected in the simplified treatment above. One

can do the same thing in the relativistic limit.

So far we’ve considered completely degenerate material, but we should also mention

that a rough boundary between nondegenerate and degenerate is when EF > kT . This

allows us to answer the burning question...

For Perspective: am I degenerate? In the old days we’d figure this out by

considering my deeds and bad habits, but now we can answer it mathematically! Ask

class: what do we need to determine? We need to figure out the Fermi energy of my

constituents, then compare it to my thermal energy. Ask class: if there are plenty of free

particles of all kinds, what kind of particle would be degenerate first? Electrons, because

they have lower mass and EF ∝ 1/m for nonrelativistic. Ask class: is the nonrelativistic



limit the correct one? Yes, because 106 g cm−3 is the rough boundary, and I’m nowhere

near that!

In the examples above we’ve discussed matter that is completely ionized, so that

electrons are free to move around as they will. However, in me the electrons are mostly

not free. Instead, typically there are ions. So, let’s calculate first what the Fermi energy

is assuming the dominant species is a molecule of some sort. What is the most common

molecule? Water, of course. Water has an atomic weight 18 times that of hydrogen, or about

20 times that of the neutron, roughly speaking. The critical density at which the Fermi

energy becomes relativistic goes like M3, so for water it is about 203 ≈ 104 times that for

neutrons, or about 6 × 1019 g cm−3. Below this density the Fermi energy is nonrelativistic,

and therefore goes like p2 ∼ n2/3. At my density of ∼ 1 g cm−3, the Fermi energy is

therefore ∼ 10−13 times the rest mass energy of water, or 10−13×20 GeV=2 × 10−3eV. The

equivalent temperature for 1 eV is about 104 K, so this equates to about 20 K versus about

300 K for the temperature. Sadly, most of my mass is not degenerate! Of course, this is

also true for, say, a white dwarf, where the mass is dominated by nondegenerate nucleons

but the degenerate electrons provide the pressure.

But there may still be hope for me! Suppose that I have some small fraction of free

electrons running around in me. In particular, suppose that there are about 10 electrons

per molecule, and that about 1% of molecules have donated 1 electron to the general

environment. The density of free electrons is therefore 10−3 times the density it would be if

all atoms were completely ionized. For the purpose of this calculation, therefore, it’s as if I

were completely ionized but had a density of about 10−3 g cm−3. Using the same approach

as before, we know that for electrons the density at which relativistic degeneracy starts is

about 106 g cm−3, and that below this the Fermi energy scales as p2 ∼ n2/3. Therefore,

at 10−9 of this density the energy is 10−6 of the electron rest mass energy, or 0.5 eV.

This equates to ∼5000 K, meaning that my electrons would be degenerate by a factor of

more than 10! Woohoo! Unfortunately, J. Norman Hansen, professor of chemistry and

biochemistry, says that in biological systems free electrons essentially don’t exist, because

as soon as one would be stripped off of a molecule it would go to another one, and hence

electrons spend time in one orbital or another. Thus, tragically, I’m not degenerate :).


