
Atomic Structure

In the next several lectures we’re going to consider radiative processes related to

transitions in atoms and molecules. In this lecture we’ll take a basic look at the structure

of atoms themselves. To do this right we need to use the equations of quantum mechanics,

which would mean the Dirac equation or, for a good approximation, the Schrödinger

equation with the Pauli exclusion principle. We will, in fact, use the Schrödinger equation.

However, before going into those details it’s helpful to see how one can get some insight

with semiclassical approaches.

First, let’s think of an atom purely classically. Imagine that we treat a hydrogen atom

as an electron moving in circles around a proton. The electron is therefore accelerated, so

it radiates. The total energy at a given instant is the (negative) potential energy plus the

kinetic energy, and for a circular orbit the total energy is negative (it’s half the potential

energy, by the virial theorem). Therefore, loss of energy means that the electron moves

closer to the proton, so the acceleration is greater and the energy loss is greater. Classically,

this process would run away and within a tiny fraction of a second the atom would collapse.

As a semi-classical try to deal with this, Bohr suggested a quantization rule that the

angular momentum of the electron had to be an integer multiple of h̄. If we assume this

but otherwise keep our classical “solar system” picture, then for the ground state we have

V = −e2/r, K = 1

2
mev

2 = e2/2r (from the virial theorem), and L = mevr = h̄. The total

energy is −e2/2r, which for this angular momentum is E = −mee
4/2h̄2 = −13.6 eV. This

happens to be exactly right, and if you put in 2h̄, 3h̄, and so on you get the right energy

spacing (E(nh̄) ∝ 1/n2).

But why should the angular momentum be quantized? Let’s take a different approach:

from the uncertainty principle we know that if an electron is confined to a small volume

then it has a large momentum. In particular, let’s say that p = h̄/∆x, or if the electron

is within a distance r of the proton then p = h̄/r. Then, independent of quantization

effects, we’d like to know the ground state of the atom, which is where the total energy is

minimized. The total energy is p2/2me − e2/r, which is h̄2/(2mer
2) − e2/r. This reaches a

minimum at r = h̄2/(mee
2), so that again we get the exact answer E = −mee

4/2h̄2.

This is too good to be true. In fact, we’re just lucky to get the right factors in these

cases, although getting the dependences right is not an accident. It is, however, helpful to

have this general picture before moving on to the equations.

The fully quantum mechanical way to understand the structure of atoms, if they’re

nonrelativistic, is to use the Schrödinger equation. As you know, this takes the form

HΨ = ih̄∂Ψ/∂t (1)



where H is the Hamiltonian operator and Ψ is the wavefunction. In classical physics the

Hamiltonian is the total energy, i.e., the sum of the kinetic and potential energies. In

quantum mechanics, it is the sum of the operators for the kinetic and potential energies.

Conveniently, the kinetic energy depends only on momenta (or derivatives of position),

whereas the potential energy depends only on positions. One can select a representation in

which one wants to write the operators; in the coordinate representation p = −ih̄∇, so if

we use the nonrelativistic expression EK = p2/2m then the Schrödinger equation becomes
(

−
h̄2

2me

∇2 + V

)

Ψ = ih̄∂Ψ/∂t . (2)

If the solution is time-independent, then Ψ = ψ(r) exp(iEt/h̄), so we get the time-

independent equation
(

−
h̄2

2me

∇2 + V

)

ψ = Eψ . (3)

Before specializing to electric fields, let’s think about how this would be generalized

to relativistic energies. I want to say up front that I don’t expect you to grasp all of this

fully (I certainly don’t understand all the implications!), and in no way do I intend to

test you on it. I do, however, want to show you a little of the thinking that has gone

into relativistic quantum mechanics, so that we can have a better perspective on the

nonrelativistic approximations we’ll be using.

Imagine that we have no potentials to worry about. Then E2 = p2c2 + m2c4 for some

general particle of mass m, so if we square the time-dependent version of the Schrödinger

equation and rearrange we get
[(

∇2 −
1

c2

∂2

∂t2

)

−
(

mc

h̄

)2
]

Ψ = 0 . (4)

This is called the Klein-Gordon equation, because it was originally written down by

Schrödinger. Looks fine, right? The difficulty, as discussed in Shu (beginning of chapter

25) is that for this equation (unlike the Schrödinger equation) one can’t interpret Ψ as a

wave function such that |Ψ|2 is the probability density. That’s why Schrödinger rejected

this equation and it got named after other people. It does turn out that the Klein-Gordon

equation can be used instead as a field equation for scalar (spin 0) particles.

The problem here is the introduction of a second time derivative. Dirac looked for a

generalization of the Schrödinger equation that kept the linearity in time but had symmetry

between time and space (as required by special relativity). Thus, the Hamiltonian operator

(without a potential) would be

H = a · Pc + bmc2 , (5)

where a and b are constants. This can be equated to H = (P 2c2 + m2c4)1/2; squaring and



solving, we get the requirements

axax = ayay = azaz = bb = 1

axay + ayax = ayaz + azay = azax + axaz = 0

axb + bax = ayb + bay = azb + baz = 0 .

(6)

We write it in this way instead of, say, writing axb + bax = 2axb because in fact these

equations can’t be solved if you use ordinary numbers for ax, ay, az, and b. Instead, you

have to use matrices. These 4x4 matrices are given in many places (e.g., Shu, page 268).

As a result, the wave function needs to have four components (as Shu emphasizes, this

does not make it a four-vector; it’s just some internal space for the particles treated in this

way). If we say Ψ → (Ψ1, Ψ2, Ψ3, Ψ4) and solve the matrix equation that way, then the

probability density becomes ρ = |Ψ1|
2 + |Ψ2|

2 + |Ψ3|
2 + |Ψ4|

2. Dirac’s equation turns out

to represent electrons beautifully, taking into account their spin, being relativistic, and the

whole shebang. We’ve diverted here because it’s useful to see the full correct way of doing

things every now and then, and Rybicki and Lightman don’t cover this. Note, by the way,

that the P is not the canonical momentum (the one such that p = −ih̄∇), but the particle

momentum; e.g., for an electromagnetic field P = p − q
c
A.

We will now return to using the Schrödinger equation. We can do this because for most

atoms the energies are very non-relativistic, so all those attendant complications are just

small perturbations.

Ask class: Suppose we have a hydrogen atom. What is the potential energy? It’s

−e2/r, where r is the separation between the proton and electron. Ask class: what, then,

is the Hamiltonian? It is

H = −(h̄2/2m)∇2 − e2/r . (7)

The time-independent Schrödinger equation then becomes
[

−(h̄2/2m)∇2 − e2/r
]

ψ = Eψ , (8)

an eigenvalue/eigenvector equation. Ask class: now suppose we have a nucleus of charge

Ze, and some number of electrons. Now what is the potential energy? It can be broken

down into the potential energy of the electrons with the nucleus, and the potential energy of

the electrons with themselves. If we sum over these and also sum over the kinetic energies

of the electrons, the time-independent Schrödinger equation becomes


−
h̄2

2m

∑

j

∇2

j − E − Ze2
∑

j

1

rj

+
∑

i>j

e2

rij



 ψ = 0 . (9)

Let’s start with a single-electron atom. As with other situations we’ve encountered (e.g.,

Maxwell’s equations), the Schrödinger equation can in principle be solved directly by brute

force, but in practice there are often shortcuts or things one can borrow from mathematical



physics that simplify the analytical treatment. That’s the case here as well. You could try

to solve the equation by making an inspired guess (e.g., that the wavefunction should be

the product of a polynomial in r with some exponential in r). That works. Or, you could

use analogies with classical mechanics and electromagnetism to think about the full form of

the wavefunction, which involves spherical harmonics.

Anyway, the single-electron approximation is more generally useful than you might

think. The outermost electron of an atom can often be treated as if it is a single electron

outside a point charge that is comprised of the nucleus plus the other electrons. The

innermost electron of an atom can sometimes be treated as if it interacts just with the

nucleus, with a constant contribution from the other electrons. These are special cases

of two useful approximations: first, the self-consistent field approximation, in which each

electron feels the nuclear potential plus the averaged potential of the other electons; and

second, the central field approximation, in which the averaged potential is assumed to be

spherically symmetric. For rough estimates, these do well.

If one has a central potential (spherical symmetry), so that H depends only on r, then

(as in other analogous situations) one can break down the wavefunction into

ψ(r, θ, φ) = r−1R(r)Ylm(θ, φ) , (10)

where R(r) is some function to be solved for and Ylm are the spherical harmonics. Plugging

this into the equation for hydrogen, for example, we find that the eigenvalues are indeed

E = −mee
4/(2n2h̄2) for n a positive integer, as our simpler approach found as well. Thus,

to this level, all states with a given n have the same energy; there is no dependence on

the orbital quantum numbers l and m, let alone the spin quantum number ms (which is

needed because the electron spin can be +1/2 or -1/2). Still, to specify the particle state

completely we need all four quantum numbers (n, l,m,ms). Indeed, when higher-order

effects are considered, or perturbations from external fields such as magnetic fields, the

degeneracy in energy is broken.

What do you do if you have more than one electron? In that case the main new effects

come from the Pauli exclusion principle: two identical fermions can’t occupy the same

quantum state. Applied to multielectron atoms, this means that the overall wavefunction

must be perfectly antisymmetric. For example, let’s represent the full wavefunction as a

product of single-electron wavefunctions:

Ψ = ua(1)ub(2)uc(3) . . . (11)

where 1 means particle 1, 2 means particle 2, and so on, and a indicates some quantum

state (n, l,m,ms), b indicates another quantum state, and so on. If you take all possible

combinations of states, that forms a fine basis state but doesn’t satisfy Pauli exclusion, so

it’s better to build that in from the start. A convenient way to do this is via the Slater



determinant, which guarantees antisymmetry of the wave function if any two particles are

interchanged.

That’s all very well, you may say, but how do you actually solve the bloody equations?!?

The problem is that, aside from the very simplest atoms (single-electron atoms) there are

no longer any exact analytical solutions of the Schrödinger equation. Oops! Not only that,

but even if you’re prepared to spend arbitrary computer time on a problem, eigenvalue

equations can’t usually be solved by random functions. We need a systematic way to search

for wave functions that are almost right, in the sense of giving us approximately the right

eigenvalues.

Fortunately, such a method exists. It uses the variational condition that for any system

the eigenfunctions are such that if one takes functions “nearby” the eigenfunctions, the

expectation value of the Hamiltonian for those new functions will equal the energy of

the eigenfunction, to first order. That is, δ〈H〉 = 0 for eigenfunctions, but for no other

functions. For example, this means that no function gives a lower expectation value than

the ground state eigenfunction. To prove this, consider 〈H〉 = 〈ψ|H|ψ〉/〈ψ|ψ〉 for any

function |ψ〉. We can expand |ψ〉 in the eigenfunctions |φn〉 of H by

|ψ〉 =
∑

n

cn|φn〉 . (12)

Since the eigenfunctions are orthonormal, this gives

〈H〉 =
∑

n

|cn|
2En/

∑

n

|cn|
2 . (13)

If n = 0 is the ground state, then En ≥ E0 so 〈H〉 ≥ E0 for any state. Therefore, the ground

state has the minimum possible energy, which means that any variation in the eigenfunction

must give a change in energy that vanishes to first order (if it didn’t, there would be a

direction of change that lowered the energy). With slightly more effort, one can show that

all eigenfunctions give zero first order variation in the energy. Variational principles apply

all over the place in physics.

Variational principles are marvelous things. One picks a class of “trial” wave functions

that satisfy the Pauli principle, then varies the parameters in that class to get an energy

that is stationary to first order, using techniques from variational calculus (or numerically).

When you do this for atoms, you get the Hartree-Fock equations. The net result is that one

finds Schrödinger equations with two “potentials”: the “direct” potential (electron-nucleus

and one for the electron in question with the averaged charge density of the other electrons),

and the “exchange” potential, which isn’t really a potential per se but is instead the result

of the Pauli exclusion principle. The exchange potential makes electrons avoid each other’s

states. Application of this method gives decently accurate energies even for atoms with

many electrons.


