
Relativity and Electromagnetism

Initial questions: How do different astronomical events look
in different frames? How does this relate to cosmology and objects
with large gravitational redshifts such as black holes and neutron
stars?

We’ll wrap up our lectures on fundamental electromagnetism by
considering its relation to special relativity. Historically, Einstein
was apparently motivated by the transformation properties of the
Maxwell equations to put the finishing touches on special relativ-
ity. The approaches used in special relativity were then generalized
(thus, general relativity) to deal with accelerated reference frames.
We won’t deal with general relativity per se, but we will use some
of the geometrical concepts that give the relativity framework its
power.

In a fundamental sense, relativity deals with how quantities trans-
form in different frames. For example, how does the measured length
of a bar change from frame to frame? Let’s start with scalar quan-
tities, which are the same in all frames and are obviously conserved.

An easy example of a scalar is a number. For example, if in a
certain region one observer determines that there are five particles,
all observers will agree that there are five particles.

Less clear is the case of vectors. To understand this better, let’s
consider another situation that is simpler. Suppose we have a plane,
and in that plane we define x and y axes. In this plane we place a
vector. The vector has a particular x component and a particular
y component. If we now consider a different set of axes x′ and y′

rotated with respect to the first set, then the components of the
vector will change. Ask class: what quantity about the vector will
not change? Its length is invariant. If the x and y components of
the vector are Ax and Ay, then the squared length is AxAx + AyAy;
we’re writing one index up and one down for reasons that only really
become clear in general relativity. We can write this more compactly
by AαAα, where α=x, y and it is implied that we sum over indices
(this is called the Einstein summation convention). This quantity is
a scalar; it doesn’t change when new coordinates are picked. More
generally, the dot product A ·B = AαBα between two vectors is also
a scalar. As described in this formula, any expression without any



“free indices” (i.e., an expression in which any indices have been
summed over, once up and once down) is a scalar.

We also know that if the x′, y′ system is rotated counterclockwise
by an angle θ relative to the x, y system, then we can write the
new components in terms of the old components: Ax′

= Ax cos θ +
Ay sin θ, Ay′

= −Ax sin θ + Ay cos θ. We can then represent this as
a matrix:

(

Ax′

Ay′

)

=

(

cos θ sin θ
− sin θ cos θ

) (

Ax

Ay

)

(1)

or, using summation notation, Aβ′

= Mβ′

αAα, where M is the matrix.
Note that α and β′ are both dummy indices, in the sense that any
letters could have been used, but one convention in relativity is
to use Greek letters to indicate summing over all four indices of
spacetime.

What about in three dimensions? Now we define x, y, and z
axes. Again, the vector components change. Ask class: what
remains constant about the vector? The length, again, of course.
We can write it as AxAx +AyAy +AzAz = AαAα. We can also write
the new components in terms of the old for a given set of rotations,
and could in fact have the same matrix multiplication as before.

In Newtonian physics, the spatial distance between any two quan-
tities at an instant of time is a scalar, i.e., has the same value in
any reference system. Similarly, the time between two events is
measured to be the same by any two observers. Another way of
saying this is that Newtonian mechanics is invariant under Galilean
transformations.

However, Maxwell’s equations are not invariant under Galilean
transformations, but rather under the Lorentz transformations, which
have the non-intuitive property that they mix time and space. For
example, if the coordinates x, y, z, t are measured by one observer,
an observer moving in the +x direction at speed v measures

x′ = γ(x − vt)
y′ = y
z′ = z
t′ = γ(t − vx/c2) .

(2)

Here γ = (1 − v2/c2)−1/2. Under these transformations the interval

x2 + y2 + z2 − c2t2 remains unchanged, so it is the equivalent of the
squared length and is a scalar. However, it means that we can’t



consider space and time separately any more, but must think of
time and space as forming a “four-vector”. Let us specifically think
of time as the “0-component” of the vector, and x, y, z as the 1,2,3
components. Then, in analogy to the length of vectors in a plane
or in three dimensions, we can write the squared length as AαAα,
where our rule is that Aα = Aα unless α = 0 (the time component),
in which case Aα = −Aα. The transformation of a vector (i.e., the
knowledge of what its components would be in one frame if you
already know them in a different frame) is given by the Lorentz
transformation matrix Λβ′

α, so that Aβ′

= Λβ′

αAα and again there is
an implied summation over indices that appear once up and once
down.

An important four-vector is the four-velocity of a particle. Uα =
(γuc, γuu), where u is the normal space velocity with three com-
ponents and γu = (1 − u2/c2)−1/2 where u is the magnitude of
u. If we compute the square of the four-velocity we find UαUα =
−γ2

uc
2 + γ2

uu
2 = −c2. This means that the four-velocity has a con-

stant magnitude. In turn, this means that the four-acceleration has
to be orthogonal to the four-velocity, aµUµ = 0.

When we widen our scope to electromagnetism we find a num-
ber of examples of useful four-vectors. For example, energy is the 0
component of a four-vector in which the x,y,z components are the
x,y,z components of momentum. For a photon this means that if the
photon has frequency ω and wave vector k, the four-vector could be
written schematically as (ω,k). Thus, we know how the frequency
and wave vector transform between different frames. Another exam-
ple is the electromagnetic potentials. If φ is the scalar potential and
A is the vector potential, then the four-potential is Aα = (φ,A).
Yet another example is charge densities and current densities. If ρ is
the charge density and j is the current density, then the four-current
is jα = (ρc, j).

When we try to apply this to electromagnetic fields, however, we
run into a puzzle. Consider the electric field. It has three com-
ponents, so to turn it into a four-vector we would need one extra
component. You might think it would be a simple matter of finding
something that acts “time-like” to add to the three components of
electric field, but a thought experiment shows you can’t do that.
Remember that one hint that time must be included with space in a
four-vector is that when viewed in a moving frame, time and space



are mixed. Now consider a single electron at rest. This clearly
produces an electric field, but because it isn’t moving there is no
magnetic field. However, viewed in a moving frame the electron is
moving so there is a current and hence a magnetic field. This means
that motion mixes the electric and magnetic fields. But there are a
total of six components (three electric, three magnetic), so clearly
these can’t all fit in a four-vector!

The way out is to use another entity, not a scalar or a vector but
a grand generalization called a tensor. A tensor, like a scalar or a
vector, is a geometric entity that has properties independent of any
particular coordinate system, but in a particular coordinate system
it can be thought of as a function that gives particular numbers at
particular places for specific indices. For example, suppose we have
the tensor Cαβ. At a particular location and time (i.e., point in
spacetime), the xy component is Cxy, and so on. As an analogy (al-
though this is not technically a tensor), think of an electric field. It
has three components. For any of its three components you can take
a derivative in any of three directions, so if you define a derivative
Cα

β = ∂Eα/∂xβ you can get components. You could then take the

second derivative in any direction to get Dα
βγ = ∂2Eα/∂xβ∂xγ, and

so on. To figure out the components of a tensor in one frame given
the components in another frame, in special relativity we simply
repeatedly apply the Lorentz transformation:

A′(= scalar) = A
Bβ′

= Λβ′

αBα

Cα′β′

= Λα′

µΛβ′

νC
µν

(3)

and so on. In general relativity, where spacetime is “curved” in a
geometric sense, there are other terms, but we’ll ignore those.

With all that background, we find eventually that the tensor
associated with the electromagnetic field is the antisymmetric tensor

Fµν ≡ ∂Aν/∂xµ − ∂Aµ/∂xν (4)

or in Cartesian coordinates

Fµν =











0 −Ex −Ey −Ez

Ex 0 Bz −By

Ey −Bz 0 Bx

Ez By −Bx 0











. (5)



Okay. That’s all very well, but one reason we got into this was that
we wanted to know what quantities remain constant between frames.
Ask class: how can we form a scalar out of the electromagnetic
tensor, with the hint that if there are no free indices then we have
a scalar? One way is to form the “square” of the tensor, FµνF

µν ,
which is 2(B2 − E2), so B2 − E2 is invariant. Another one is the
determinant, which is a scalar that can be obtained from any matrix.
The determinant is (E · B)2, so E · B is invariant. Yet another
would be the trace (sum of diagonal elements), F µ

µ , which is 0
and indeed conserved (but not very interesting!). Suppose that we
again return to the case of a single electron that is stationary in a
particular frame. Ask class: can we transform to a frame in which
E = B = 0? No, because in such a frame B2 − E2 = 0, whereas in
our original frame it was nonzero.

Why do we go to all this trouble? The original form of Maxwell’s
equations may have its complications, but at least it is relatively
familiar and we have an idea of how to do manipulations with them.
In contrast, we’ve now introduced a whole new formalism. The
advantage is that in this formalism (which really isn’t so bad once
you get used to it), there are extremely well defined rules to figure
out how observed quantities such as the electric and magnetic fields
change under relative motion. In contrast, if you laboriously figure
out E and B for one reference frame using Maxwell’s equations,
figuring out what they are in another frame drops you back to step
1 if you have to do it all from scratch. The transformation laws
mean, in particular, that for any given situation you can pick the
frame in which the original calculation is easiest, then transform
away. This is also the key to computations in general relativity:
pick an easy (local!) frame in which the answers are as clear as
possible, then use the machinery of transformations as necessary.

Let’s examine a particular example of how to use transformations.
When we computed the Larmor formula for radiation, we restricted
ourselves to slow-moving particles. Now we’d like to allow arbitrary
relativistic motion. Consider a single particle in arbitrary motion.
Ask class: at a given instant, what is the most convenient reference
frame for this analysis? It’s the one in which the particle is instan-
taneously at rest (but it may still have a nonzero acceleration). In
that frame, we have our old formula

P = (2q2/3c3)|a|2 , (6)



where a is the three-acceleration. Note, however, that in this frame
the four-velocity is Uα = (βc,0). Since aµUµ = 0 this must mean
that in this frame a0 = 0. We can therefore write P = (2q2/3c3)aαaα.
But we sum over all indices, so this is a scalar! The total radiated
power is independent of the reference frame, and to compute it we
just pick a frame and measure the four-acceleration. Does this make
sense? Note that energy and time both transform the same way
(they’re the timelike components of a four-vector), meaning that
since power is energy per time, the changes due to the transfor-
mation cancel. One can also use this approach to show that (as
expected) the power is beamed in the direction of motion.

Our final task will be to consider how the phase volume and
distribution function transform between frames. Consider a group of
particles all close together in position and momentum. Their spatial
volume is d3x′ = dx′dy′dz′ and their momentum volume is d3p′ =
dp′xdp′ydp′z. Their overall phase volume is then dV = d3x′d3p′. Now
consider how this phase volume is measured by an observer moving
at some constant speed v (with Lorentz factor γ = (1 − v2/c2)−1/2)
with respect to our original frame. We have freedom to rotate our
axes, so let’s align them so that the motion is in the x direction.
In that direction, the length is shortened by a factor γ (so that
dx = γ−1dx′), so d3x = γ−1d3x′. However, the x-momentum is
increased by the factor γ, so that d3p = γd3p′. Therefore the phase
volume dV = dV ′; it’s an invariant. It follows immediately that the
distribution function f = dN/dV is also invariant, since the number
of particles is obviously a scalar.

Using this we can (at long last!) explain why Iν/ν
3 is constant.

Consider the energy density per solid angle per frequency uν(Ω) we
defined earlier. We can also compute this using f , so we have

hνfp2dp dΩ = uν(Ω)dΩ dν . (7)

Earlier we found uν(Ω) = Iν/c, and we know p = hν/c. Simplifying,
we find that Iν/ν

3 ∝ f . But f is a Lorentz invariant, so we know
Iν/ν

3 is also a Lorentz invariant. The book contains other examples,
but let’s think of one in particular to sharpen our intuition.

Recommended Rybicki and Lightman problems: 4.1, 4.2,

4.4


