
Plasma Processes

Initial questions: We see all objects through a medium, which could be interplanetary,

interstellar, or intergalactic. How does this medium affect photons? What information can

we obtain?

In the preceding few lectures, we’ve focused on specific microphysical processes. In

doing so, we have ignored the effect of other matter. In fact, we’ve implicitly or explicitly

assumed propagation through a vacuum for most applications. It’s time to take on matter!

When we introduced Maxwell’s equations, we very solemnly defined D = ǫE and

H = B/µ to include the effects of matter, where ǫ is the dielectric constant and µ is

the magnetic permeability. Is this necessary? No! Remember that Maxwell’s equations

explicitly include sources, in the form of ρ and j. If we do this consistently, for all charges

and currents (whether or not they are in a medium), then Maxwell’s equations for E and B

alone work just fine. Thus, Maxwell’s equations for a “vacuum” work fine in that case, as

long as both free and bound charges are included.

In that case, we can again think about the propagation of radiation, this time more

generally. Again let’s assume a space and time variation of the form exp i(k · r− ωt). Then

we get
ik · E = 4πρ , ik · B = 0 ,

ik × E = i(ω/c)B , ik × B = (4π/c)j − i(ω/c)E .
(1)

Now, in general this could be pretty tough, if the medium is something arbitrary (air,

water, glass). In our case, though, we’re specifically interested in a plasma, which can be

loosely defined as an ionized gas that is globally neutral. That means that all charges

are mobile in principle. However, as we’ve done before, we’ll assume that the ions are

basically stationary for our purposes, and mainly serve to keep the plasma neutral. Another

important simplifying assumption is that the plasma is isotropic. Ask class: what does

that imply about the magnetic field? It implies that there is no significant external magnetic

field, because that would break isotropy.

Let’s consider nonrelativistic electrons. A given electron follows Newton’s law

mv̇ = −eE . (2)

There can be an internal magnetic field, just not an ordered one. Ask class: why, then,

have we neglected the magnetic component of the force? It’s because that term is of order

v/c, which is small if the motion is nonrelativistic. Given our assumption about the space

and time variations of quantities, this means

v = eE/(iωm) . (3)



The current density is j = −nev, meaning that we get

j = σE , (4)

where the conductivity is σ = ine2/(ωm). This is Ohm’s law; the current responds directly

to the electric field. Note, however, that this statement requires isotropy. Ask class: can

they think of a specific example in which anisotropy will lead to a different response to an

applied electric field? If there is a strong magnetic field, charges and currents move along

the field a lot better than across, so no longer is there this linear relation. In general, in

fact, the conductivity is a tensor. However, for our situation we can treat it as a scalar due

to isotropy.

From charge conservation, our exp i(k · r − ωt) assumption gives

−iωρ + ik · j = 0 (5)

so that

ρ = ω−1k · j = σω−1k · E . (6)

If we define the dielectric constant by

ǫ ≡ 1 − 4πσ/(iω) (7)

(note that this is real, since σ has an i in it), we get

ik · ǫE = 0 , ik · B = 0 ,

ik × E = i(ω/c)B , ik × B = −i(ω/c)ǫE .
(8)

Well, lookee here. This looks just like the “source-free” vacuum equations we had before,

except for ǫ. Indeed, arguing as before, we find that k, E, and B are mutually perpendicular.

However, we find that

c2k2 = ǫω2 . (9)

Since ǫ depends on ω, we no longer have the simple vacuum situation in which all frequencies

travel at the same rate, the phase velocity is the same as the group velocity, and so on.

Thus, the presence of a plasma introduces dispersion, where wave packets spread and there

is effectively an index of refraction. If we substitute in expressions, we can rewrite the

dielectric constant as

ǫ = 1 − (ωp/ω)2 , (10)

where ωp =
√

4πne2/m is called the plasma frequency. Numerically, ωp = 5.63× 104n1/2 s−1

if n is in cm−3.

Ask class: from these definitions and the dispersion relation, what does this tell us

about propagation when ω < ωp? It means that k is imaginary: k = (i/c)
√

ω2
p − ω2. Ask

class: what does that mean about the propagation of radiation below ωp? It means that



there is an exponential cutoff in the amplitude, with a distance scale of order 2πc/ωp.

Therefore, effectively, frequencies below ωp can’t propagate in a plasma.

Side note 1: one way to get quick intuition in a number of astrophysical situations

is to have a number of characteristic quantities in mind. The plasma frequency is an

example: if you have a plasma of a given number density and are considering propagation

of electromagnetic waves, you should compare the frequency of the wave with the plasma

frequency. If a magnetic field is involved, think of the cyclotron frequency. If a high density

plasma is relevant, think of the Fermi energy. Stuff like that. It helps you decide quickly

what regime you’re in and what processes are likely to be relevant.

Side note 2: since σ is purely imaginary, Ohm’s law means that there is a 90◦ phase shift

between j and E. Therefore, in a time-averaged sense, j · E = 0 and there is no net work

done by the field in an isotropic plasma. That also means there is no dissipation, so below

the plasma frequency you have a pure reflection. Thus, you can probe the ionosphere of the

Earth by finding out when a wave of a given frequency is completely reflected. You can also

communicate intercontinentally by bouncing low-frequency waves off of the ionosphere.

Now back to our regular program. Electromagnetic radiation travels at a velocity

different from c, due to the presence of matter. The phase velocity, vph ≡ ω/k, is greater

than the speed of light. However, the physically relevant speed is the group velocity

vgr = c
√

1 − ω2
p/ω

2, which is less than c (this is the speed at which wave energy or

information travel). The frequency dependence means that there is dispersion in the

propagation of light over a variety of frequencies. One especially useful application is to

pulsars. Suppose a pulsar is a distance d away. Ask class: how long does it take for light

of a given frequency to reach us? The time is

tp(ω) =
∫ d

0
ds/vg(ω) . (11)

Here s measures the line of sight distance to us. Plasma frequencies in the ISM are really

low, usually 103 Hz or so, so we can assume ω ≫ ωp and therefore

v−1
g ≈

1

c

(

1 +
1

2

ω2
p

ω2

)

. (12)

Therefore, the propagation time is

tp ≈
d

c
+ (2cω2)−1

∫ d

0
ω2

p ds . (13)

This is the vacuum time (d/c) plus some extra. There is therefore a gradient in the time as

a function of frequency,

dtp/dω = −
4πe2

cmω3
D , (14)



where D ≡
∫ d
0 n ds is the dispersion measure. In principle this can be used to find the

distance to a pulsar, given an estimate of the average number density of plasma in the ISM.

In practice, the errors are pretty large!

Let’s complicate things a bit by assuming we have a fixed external magnetic field B0 in

the plasma. Ask class: qualitatively, what does that do? It means that the plasma and

propagation in it are no longer isotropic, since the magnetic field introduces a preferred

direction. It also means that not all polarizations are equal in their propagation properties.

We can make some progress by thinking about the special case of propagation along

the direction of the field, and by considering only cold plasma (i.e., nonrelativistic motion).

Also, let’s assume that the magnitude of the external field is a lot greater than the

magnitude of the fields of the propagating wave, so that the equation of motion becomes

mdv/dt = −eE −
e

c
v × B0 . (15)

For propagation along a fixed direction we only have to consider two polarization modes.

Let’s choose circular modes:

E(t) = Ee−iωt(ǫ1 ∓ iǫ2) , (16)

where - gives right circular and + gives left circular polarization. If the wave propagates

along B0 = B0ǫ3, then by substituting we find that the steady-state velocity has the form

v(t) =
−ie

m(ω ± ωB)
E(t) , (17)

where ωB = eB0/mc is the cyclotron frequency for nonrelativistic particles. Ask class:

what are the implications of this, as the wave goes through the medium? Since the speeds

of the different polarizations are different, there will be a net rotation of the polarization

vector as the wave propagates through the plasma. One can rewrite this as an expression

for the dielectric constant:

ǫR,L = 1 −
ω2

p

ω(ω ± ωB)
. (18)

In general, an electric field vector with wavenumber k traveling a distance d will rotate in

phase by k · d. If the wavenumber is not constant along the path, this must be integrated.

Before getting the formula for Faraday rotation (the angle of rotation after some

distance), let’s think about some limits. Ask class: what do they expect the rotation to

be if the field strength is very small? It should also be small. Ask class: does the equation

satisfy this constraint? Yes, because small B0 means small ωB, and hence a small difference

between the polarizations. Ask class: from the formula, what happens at extremely large

B0? There, also, the difference is small, because the ωB in the denominator means that

ǫ → 1 when B0 is big.



As can be verified easily (see book), in the common astrophysical limits that ω ≫ ωp

and ω ≫ ωB we have for our angle of rotation

∆θ =
2πe3

m2c2ω2

∫ d

0
nB‖ ds . (19)

Here B‖ is the component of B parallel to the line of sight.

Now let’s think about ways in which this might be applied in practice. First, Ask

class: if the magnetic field is uniform (no change in direction or magnitude in the region),

what happens to the degree of polarization due to Faraday rotation? Nothing; the angle

simply rotates. Okay, then, Ask class: what if the region has a tangled magnetic field

and you observe a region that involves many tangles? Then, different parts are rotated

by different amounts, so the net result is a decrease in the degree of polarization. This is

sometimes used in observations of active galactic nuclei. Many times parts of the spectrum

are thought to be due to synchrotron radiation, which you remember produces highly

polarized light. However, observed with low angular resolution, there is little polarization.

Observations of higher angular resolution do give net polarization, so by comparing the two

one can estimate the line of sight integrated magnetic field. Similar methods are used to

estimate the magnetic field strength in the interstellar medium or molecular clouds, when

more direct spectroscopic information is unavailable.

Finally, we can just mention in passing one other effect of plasmas. Since the speed

of electromagnetic waves is less than the vacuum speed of light, it becomes possible for

particles to travel faster than the local speed of electromagnetic waves. This produces

effects similar to shocks in the atmosphere, and generates Cerenkov radiation, which is

bluish (i.e., it has a spectrum tipped towards high frequency, and would actually look blue

to the eye). Only particles traveling faster than c/n emit radiation, which has been used

to detect neutrinos (if they scatter electrons in water, the electrons can move faster than

c/n) and estimate the energies of cosmic rays by using materials with different indices of

refraction.

Recommended Rybicki and Lightman problem: 8.3


